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Abstract 

 

The development of reliable forest monitoring systems in tropical regions is crucial to 

support initiatives designed to limit the spread of deforestation.  Optical monitoring in 

is hampered by the frequent cloud cover in tropical regions, but this is not a problem 

for space-borne Synthetic Aperture Radar (SAR) systems.  We have previously 

developed techniques of using L-band SAR data from the JAXA Advanced Land 

Observing Satellite (ALOS) able to detect 70% of deforestation at a false alarm rate of 

20%.  In this paper we build on that work to show that the introduction of textural 

measures can boost the equivalent detection rate to 82%.  We also extend the study to 

discuss the transferability of these results to adjacent regions.  
 

1. Introduction 

 

Tropical forests support rich, bio-diverse habitats and have a complex influence on 

climate through physical, chemical and biological processes(Bonan 2008; Pitman et 

al. 2004), but they are under huge pressure worldwide from agriculture clearance and 

logging for their resources(DeFries et al. 2010).  Deforestation not only destroys these 

remaining natural habitats, it also releases carbon dioxide and reduces its uptake by 

plants.  However, forests also buffer climate extremes and help to maintain the 

hydrological cycle.  These feedbacks are currently under-represented in the  

development of policy which usually focuses simply on reducing greenhouse 

gasses(McAlpine et al. 2010).  Land-use changes, dominated by deforestation and 

associated burning, are responsible for almost a quarter of all anthropogenic carbon 

emissions (FAQ7.1.(IPCC 2007). The Reducing Emissions from Deforestation and 

forest Degradation (REDD/REDD+) mechanism (http://www.un-redd.org/) 

established under the United Nations Framework Convention on Climate Change 

(UNFCCC) seeks to encourage developing countries to curb deforestation, foster 

carbon stocks and reverse the trend by offering financial incentives.  However, the 

large degree of uncertainty in estimates of deforestation rates and the associated 

emissions (Achard et al. 2002; Houghton 2005, 2010; Le Quéré 2010) weaken the 

argument for the need to change and impede the implementation of controls. 

Reducing this uncertainty is crucial to assessments of global carbon balance for 

climate modelling and harnessing political will for change. are also dependent on 

reliable, independent estimations of deforestation rates (Goetz et al. 2009).  Hence, 

the REDD+ initiative also encourages countries to develop forest monitoring systems 

as part of a drive towards sustainability and improved carbon accounting.  RREF 

(COP16/CMP6 2010).  Major forests cover vast, remote areas and efficient monitoring 

techniques are therefore largely dependent on satellite-based techniques.  In humid 

tropical regions the frequent and extensive cloud cover is a major handicap to optical-

based systems and methods are being sought to develop radar-based techniques using 

cloud-piercing frequencies.  The Japanese Aerospace Exploration Agency (JAXA) 

Advanced Land Observing Satellite “Daichi” (ALOS) (Rosenqvist et al. 2007) was 

fully operational between  June 2006 and April 2011 when it suffered a power failure.  

It included a Phased Array L-band Synthetic Aperture Radar (PALSAR) operating at 

1270 MHz (a wavelength of 26.4 cm) and provided a number of image products.  In a 

recent publication(Whittle et al. 2011) we developed and evaluated techniques of 
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using Synthetic Aperture Radar (SAR) imagery from ALOS to detect deforestation in 

tropical forests using the Riau region of Sumatra as an example.    

 

Indonesia has the third most extensive tropical forest cover in the world, much of it 

covering peatland that can hold more CO2 than the forest itself(Hooijer et al. 2010; 

Page et al. 2002).  However, Indonesia’s current deforestation rate of 3.4% per year is 

second only to that of Brazil among countries with humid tropical forests (Hansen et 

al. 2009; Hansen et al. 2008).  Sumatra has the most intense recent large-scale forest 

clearance in Indonesia, with the province of Riau recording the highest degree of 

change (Broich et al. 2011; Hansen et al. 2009).   Deforestation in Indonesia ranges 

from selective logging to large-scale clearance for pulp wood and agricultural 

plantations to slash and burn clearance.  In line with REDD proposals monitoring is 

urgently needed  for independent verification(Fuller 2006) . 

 

The earlier paper{Whittle, 2012 #70} used a case study in Riau to develop methods of 

detecting deforestation using SAR data from the ALOS satellite.  Using the available 

databases(Uryu et al. 2010) we focussed solely on the regions that were forested in 

mid-2007 and compared with the later database to determine which regions were 

deforested by mid-2008.  We used two ALOS products in different ways and found 

that it was advantageous to combine the results of both. ScanSAR images are single-

polarized products acquired with the same geometry once every 46 days with a 

resolution of 100 m.  They typically cover 359 km in range and 379 km in swath, i.e. 

136000 km
2
, and are potentially well suited to monitoring applications.   We obtained 

time-series of these and found that the temporal standard deviation, SD, was the best 

indicator of deforestation over the period of the study.  Fine Beam Dual (FBD) 

images are obtained with HH & HV polarization at a resolution of 12.5 m. They have 

dimensions of 69.8 km in range by 58.6 km in azimuth, with repeat images usually 

acquired at 3 times a year during June, July and September.  We developed a ratio 

technique for the analysis of intensity changes between pairs of time-separated FBD 

images.  We also found that the temporal analysis of a time series of lower resolution 

ScanSAR images could give comparable results but was compromised by strong 

temporal fluctuations in backscatter, probably due to significant precipitation and 

flooding events since they often highlighted river basins.   Combination of both types 

of data using data fusion techniques gave a 10% improvement in the detection rates.  

 

SAR images are obtained using coherent radiation and include an element of speckle 

caused by interference from adjacent scattering centres.  Much of this speckle is 

filtered from our images before analysis and the resulting image texture is related to 

scene texture that represents variations in the locally averaged reflectivity on the scale 

of the wavelength used(Raney 1998); it therefore potentially contains useful 

information about land cover.  Image texture describes variations in the intensity over 

neighbouring pixels and a number of measures can be derived from second order 

statistics(Oliver and Quegan 2004).  It has previously been demonstrated that such 

texture measures can be used to distinguish between forest and non-forest for c-band 

airborne SAR(Oliver 2000).  Furthermore, since our original methods were based on 

first-order intensities, we may expect that these second-order measures could provide 

extra information that might usefully be combined with the original techniques.  In 

this paper we compare and evaluate two basic texture measures, individually and in 

combination, as indicators of deforestation with previously developed techniques.  We 
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also extend the previous study to another three FBD scenes and discuss the 

transferability of results. 

 

2. Data 

2.1 Study areas: ground and satellite data coverage 

 

FBD data were acquired for the dates shown in Table 1 for four scenes (identified by 

path, P, and frame number, F) over the Riau province of Sumatra as shown in Figure 

1.  We also used two adjacent sets of 12 ScanSAR images each, acquired at intervals 

of 46 days between 31/01/2007 and 20/06/2008.  These cover the FBD scenes as 

shown in Figure 1.  All data were multi-channel filtered (Quegan and Yu 2001) before 

use.  RGB images of these scenes can be found in the supplementary information. 

 

Table 1   Acquisition dates for the FBD data used in this study and dates for the 

Landsat images used to construct the databases for the same scenes used in the 

analysis.  

Scene 
FBD Databases 

1st image 2
nd

 image nf2007 nf08-09 

P443-F7170 28/06/2007 30/06/2008 
23/04/2007 

14/11/2006 

22/07/2008, 

24/09/2008 

P443-F7180 28/06/2007 30/06/2008 
Exact dates 

unavailable 
22/07/2008 

P443-F7190 28/06/2007 30/06/2008 
Exact dates 

unavailable 
22/07/2008 

P445-F7170 01/08/2007 03/05/2008 
Exact dates 

unavailable 

18/05/2008, 

22/07/2008, 

11/06/2008, 

24/09/2008 

 



 5 

 

 
 

Figure 1. The four FBD scenes (hatched yellow) superimposed on an outline of 

central Sumatra (white) with rivers (red).  (a) P443-F7170; (b) P443-F7180; (c) P443-

F7190; (d) P445-F7170.  Partial outlines of the two ScanSAR scenes used are also 

shown: P115-F3650 (green) and P115-F3600 (blue). 

 

The earlier work(Whittle et al. 2011) used a detailed land cover database, WWF2007, 

that covered the Riau region and a prototype database that distinguished only natural 

forest and non-forest for part of Riau nominally dated 2008.  Both databases were 

based on the interpretation of Landsat imagery.  These have since been incorporated 

into more extensive databases, WWF-nf2007 and WWF-nf08-09, which delineate 

only forest and non-forest but cover the whole of Sumatra.  Over the regions studied 

here the Landsat imagery was acquired during mid-2008 (Table 1).  However, the 

Landsat footprints do not correspond with the FBD scenes and exact dates for the 

database therefore cannot be defined for two of the scenes used.  These databases 

have also undergone some manual correction and consequently vary slightly from the 

earlier versions over the regions studied here.  Table 2 shows the degree of overlap 

between the old and new versions of the databases for 2008 for the scene 

P443_F7170.  The natural forest indicated as lost between the nf2007 and nf08-09 

databases is used as our reference for deforestation in this work.  These show that the 

new 2008 database has 2% less natural forest than the original version but the location 

of forest has also changed giving a reduction of 4.6% in the overlap between old and 

new.  As a consequence the deforested region according to the new database is 

reduced by <1% but changes in location have led to a difference in overlap of 6.5%.  

A full discussion of the effect of such errors was presented in the earlier paper(Whittle 

et al. 2011),  here we will see that the effect of correcting the databases is that the 

measured detection rate is improved.  
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Table 2a.  Overlap of natural forest regions used in the original databases 

(WWF2007) and the new database WWF-nf07 used in this work, for the scene 

P443_F7170.  Values are also expressed as a fraction of the count obtained from the 

original database. 
Counts nf07(new) nf07(old)  Fraction nf07(new) nf07(old) 

nf07(new) 8553348 8547340  nf08(new) 1.000 0.999 

nf07(old) 8547340 8552272  nf08(old) 0.999 1.000 

 

Table 2b.  Overlap of natural forest regions used in the original databases 

(WWF2008) and the new database WWF-nf08-09 used in this work, for the scene 

P443_F7170.  .  Values are also expressed as a fraction of the count obtained from the 

original database. 
Counts nf08(new) nf08(old)  Fraction nf08(new) nf08(old) 

nf08(new) 5981374 5817745  nf08(new) 0.981 0.954 

nf08(old) 5817745 6096144  nf08(old) 0.954 1.000 

 

Table 2c.  Overlap of deforested regions obtained by difference between the original 

databases (WWF2007 and WWF2008) and the databases (WWF-nf2007 and WWF-

nf08-09) used in this work, for the scene P443_F7170.  . Values are also expressed as 

a fraction of the count obtained from the original database. 
Counts DF(new) DF(old)  Fraction DF(new) DF(old) 

DF(new) 2571974 2422624  DF(new) 0.993 0.935 

DF(old) 2422624 2590280  DF(old) 0.935 1.000 

 

 

3. Methods 

 

3.1 Assessment methods 

 

We will develop a number of different change measures which are assessed by 

comparison with the differences between the two databases nf07 and nf08 which we 

take to indicate deforestation.  This procedure is subject to errors in the database and 

also because deforestation may have occurred between the dates of the Landsat 

images used to derive the 2007 database and the first FBD scene, or the dates of the 

second FBD image and the Landsat images used to derive the 2008 database.  Both 

types of error have been discussed in the earlier work(Whittle et al. 2011).  Change 

measures were evaluated as detectors of deforestation by first obtaining a probability 

density function (PDF) for the property in question over the known natural forest 

region within the scene as defined by the earlier database, nf07.  The PDF was then 

integrated to obtain a cumulative density function (CDF).  Then by comparing the 

pixels associated above a given percentile threshold of the CDF with the deforested 

and undisturbed regions known from the difference between the two databases it is 

possible to assign a probability of detection, Pd (the probability that a deforested pixel 

would be correctly detected as such), and a probability of false alarm, Pfa (the 

probability that a pixel of undisturbed forest could be wrongly flagged as deforested), 

for the percentile used.  There is always a trade off between Pd and Pfa – high rates of 

detection can always be achieved but they come at the expense of increasing the false 
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alarm rate.  By taking a series of percentile values and plotting the Pd against the Pfa a 

receiver operating characteristic (ROC) can be obtained, which can then be used to 

assess the usefulness of the detection method.  It is also convenient for comparative 

purposes to choose values of Pfa that can be tolerated in practice, thus we will 

frequently compare results for Pfa = 0.1 and 0.2.  

 

 

3.2 Intensity measures of change 

 

In the original publication we used a ratio technique to detect intensity changes 

between time-separated FBD images.  The ratio is preferred over differencing because 

the latter accentuates the difference in speckle(Oliver and Quegan 2004; Rignot and 

van Zyl 1993).  After co-registering images using GAMMA software 

(http://www.gamma-rs.ch/) and applying a multi-channel filter (Quegan and Yu 2001) 

we found that both increases and decreases in intensity could be associated with 

deforestation events and for this reason the change measure adopted combined both 

sorts of change: 
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where  xoldI  and  xnewI  are the intensities at position x for the earlier and later 

images respectively.  Furthermore, we found that the HH and HV channels make 

significantly different contributions which could be effectively combined as the 

average,   

 

  HVRHHRR 112

1 )(1  ,      (2) 

 

to make worthwhile improvements in the detection of deforestation.  In the earlier 

paper(Whittle et al. 2011) this term was called avR1 , in this paper it is labelled R1 to 

simplify notation. 

 

3.3 Multi-temporal ScanSAR detection 

 

We previously found that the temporal standard deviation SD was the multi-temporal 

measure of change that gave the best detection rates of deforestation.  The ScanSAR 

images were first co-registered using GAMMA software and a multi-channel filter 

(Quegan and Yu 2001) was applied with window size 5×5 to reduce speckle.  The 

nf07 database was used to prepare forest masks for each of the four FBD scenes.  

These were used to find the mean forest backscatter )(kI f  
for each ScanSAR image, 

k, over each FBD footprint.   The data was then rescaled so that the mean forest 

intensity in each image became equal to the time-average of the overall mean forest 

intensity, i.e. all pixels in the k
th
 image were multiplied by the factor ),(/ kII ff

where 

fI  is the overall mean forest intensity obtained by averaging these values.  The 

http://www.gamma-rs.ch/
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variation of )(kI f
 over each of the FBD footprints was slightly different but use of 

this localised information should improve detection rate of changes due to 

deforestation which are comparable in size to the variation of  )(kI f
(Whittle et al. 

2011).  The temporal standard deviation for a pixel at position x with intensity ),( itI x

 sampled at times ti, i = 1-N  is defined as 
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N

i
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1
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is the temporal mean.   Values of SD were obtained from 

the appropriate set of 12 forest-normalised ScanSAR images, excised over the FBD 

footprint and re-sampled to the FBD pixel size 12.5m.   Treated in this way the 

ScanSAR data could deliver detection levels at Pfa= 0.2 almost as good as those from 

the FBD comparisons (see section 4).  The FBD and multi-temporal data are derived 

from different sources and contain significantly different information.  Consequently, 

we found that improved detection levels could be obtained using these data in 

combination.    

 

 

3.4 Texture measures of change 

 

We have chosen two texture measures for this study(Oliver and Quegan 2004),  the 

first is the ratio of local spatial variance and mean of the intensity I(x) at position x 

 

      11
2

2
 xxx IItex      (4) 

where the angular brackets denote averages over a small window of length wl pixels.  

The second is a normalised log measure 

          xxx IItex loglog2  ,    (5) 

 

which should be a more optimal measure for multi-look images(Oliver 1993). For the 

intensities we found that the standard ratios      xxx newold IIR   detected 

deforestation through either increase or decrease of the intensity in either channel, 

resulting in four possible measures.  Combination of the increases and the decreases 

lead to the use of  x1R  eq. (1) and further combination of the resulting HH and HV 

terms led to R1 eq. (2).  Each stage of combination led to an increase in the detection 

rate of deforestation because of the differences between the regions detected by the 

individual measures.  The texture measures also generate increases and decreases for 

both polarizations.  
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3.5 Comparison of measures 

A convenient measure of the degree of overlap between two classes is the Simpson 

coefficient (Holliday et al. 2003); for two classes containing k and l pixels whose 

overlap contains m pixels, this is given by: 

),min( lk

m
Ssim  .     (6) 

This expresses the overlap as a fraction of the smallest class; complete overlap of 

either class by the other yields a value of unity.  Tables analyzing the overlap between 

components as measured by the Simpson coefficient are given below for the 10% 

acceptance level. 

 

In each case the first table shows the degree of overlap with DF (the deforestation 

regions) and UF (the undisturbed forest regions remaining in the nf08 database). 

 

Table 3.  Simpson coefficients representing the degree of overlap between pixels at 

the 10% level for each measure with the deforested regions (DF) and the undisturbed 

regions (UF).  For scene P443-F7170. 
 Region HH HV   

  Increase Decrease Increase Decrease Row-sum Rs 

Intensity DF 0.8344 0.6643 0.6822 0.9614 3.1423 3.664 

 UF 0.1656 0.3357 0.3178 0.0386 0.8577  

        

tex1 DF 0.6123 0.6391 0.6812 0.8235 2.7561 2.216 

 UF 0.3877 0.3609 0.3188 0.1765 1.2439  

        

tex2 DF 0.6528 0.7429 0.6996 0.8576 2.9529 2.820 

 NF 0.3472 0.2571 0.3004 0.1424 1.0471  

 

The three sets of results are broadly similar – each measure shows a higher degree of 

correlation with deforested regions than with undisturbed regions, which is why they 

can be used for detection.  In each case the penultimate column gives the row-sum of 

Simpson coefficients for the 4 terms and Rs gives the ratio of these for deforested 

compared with undisturbed regions.  These ratios rank in the order Intensity > Texture 

2 > Texture 1, which reflect the overall detection performance of these measures at 

this threshold.    

 

The degree of cross-correlation between pixels associated with the four intensity 

changes, HH-increase, HH-decrease, HV-increase and HV-decrease, is reported as the 

Simpson coefficient in Table 4.  The highest value in the table is 0.32; hence, 

although there is some overlap between the four types of detection, they are 

significantly different, even when they have the same sign.  The values in the leading 

diagonals are notably larger than the off-diagonal terms, showing that changes of the 

same sign in HH and HV are more closely associated than changes of opposite sign; 

The tables for changes in tex1 and tex2 show a very similar pattern suggesting that, 

like the intensity, the texture measures show a significant degree of difference 

between the four components, which justifies the use of a similar combination 

strategy. 
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Table 4 Simpson coefficients representing the degree of overlap between pixels at the 

10% level for increases and decreases in each measure. For scene P443-F7170.   
(a) 

Intensity 
 HH  

  Increase Decrease 

HV 
Increase 0.2706 0.0129 

Decrease 0.0716 0.3206 

 
(b)  

Tex1 
 HH  

  Increase Decrease 

HV 
Increase 0.3784 0.0252 

Decrease 0.0222 0.3162 

 
(c) 

Tex2 
 HH 

  Increase Decrease 

HV 
Increase 0.4196 0.0205 

Decrease 0.0172 0.3772 

 

 

 

Tables 5a-c show the degree of cross-correlation between the measures, again from 

the Simpson overlap.  There are no values in table 5a or 5b above 0.31 showing that 

there are also differences between the intensity and either texture measure which 

might be exploited by combination.    In comparison, values in the leading diagonal of 

Table 5c are relatively high indicating that there is significant correlation between the 

texture measures and consequently that combination of these may be less fruitful.  

 

Table5a.  Simpson coefficients representing the degree of overlap between pixels at 

the 10% level for increases and decreases in intensity and  tex1. 

(a)   Intensity 

   HH HV 

   Increase Decrease Increase Decrease 

tex1 

HH 
Increase 0.2777 0.0705 0.0953 0.1461 

Decrease 0.0899 0.1677 0.1477 0.1463 

HV 
Increase 0.1819 0.1437 0.0854 0.2543 

Decrease 0.1301 0.1073 0.195 0.1642 

 

Table 5b Simpson coefficients representing the degree of overlap between pixels at 

the 10% level for increases and decreases in intensity and  tex2. 

(b)   Intensity 

   HH HV 

   Increase Decrease Increase Decrease 

tex2 

HH 
Increase 0.3103 0.0642 0.0983 0.1445 

Decrease 0.0968 0.1777 0.1538 0.1892 

HV 
Increase 0.1995 0.1336 0.088 0.2318 

Decrease 0.1317 0.1182 0.1848 0.1889 
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Table 5c  Simpson coefficients representing the degree of overlap between pixels at 

the 10% level for increases and decreases in texture1 and  texture 2. 

(c)   tex1 

   HH HV 

   Increase Decrease Increase Decrease 

tex2 

HH 
Increase 0.8168 0 0.3874 0.018 

Decrease 0 0.7569 0.0256 0.3506 

HV 
Increase 0.3872 0.0198 0.8215 0 

Decrease 0.0191 0.3164 0 0.8398 

 

 

In the light of the above discussion, the raw texture measures for image pairs were 

then treated in the same way as intensities, Eq. (1), to obtain modified ratios 
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for each location x, where T is a textural measure, either tex1 or tex2.  These were 

obtained for both polarizations, HH and HV, which, following the treatment of 

intensities above, can be combined to give a change measure for each of the textural 

measures,  

 

  HVQHHQT textex 11

2
1 )(1    ;            HVQHHQT textex 22

2
1 )(2   (8) 

 

Experiments using different window lengths are detailed in the Appendix from which 

we concluded that, as found for the intensities(Whittle et al. 2011), a window of side 

wl=23 was optimal. 

 

3.6  Combination techniques 

 

The measures SD, R1, T1 and T2 have different ranges, but they can each be mapped 

to a value between 0 and 1 by the transformation   

 
 

minmax

minˆ
AA

AA
A






x
x       (9) 

where Amax and Amin are the maximum and minimum values of the measure A over the 

region.  The transformed values can then be combined using techniques of data fusion 

(Whittle et al. 2004).  The basic method simply adds the transformed quantites 

together giving the new measure sums defined by: 

 

....)(ˆ)(ˆ)(ˆ)(  xxxx CBAsums .    (10) 

 

where )(ˆ,)(ˆ xx CB  are the transformed values of other measures.  Other data fusion 

schemes were considered, but in general we found that the sum-rule gave the best 

results and is the only data fusion measure reported here.   For brevity, we will notate 

a combination such as that in Eq. (4) as:  sums-A-B-C.  
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Principle component analysis(Jolliffe 2002)  (PCA) transforms multivariate data to a 

new space of orthogonal variables in which the first principle component is the linear 

sum of the original variables having maximal variance.  These were computed using 

the MATLAB routine princomp using standardised variables (centred and scaled by 

the standard deviation).  The results of this procedure were then rescaled to 0-1 to 

avoid negative values.  We report here values based only on the first principle 

component for each combination, which we label as PCA1.  Thus a PCA combination 

of the three measures A, B, and C will be notated as PCA1-A-B-C.  

 

 

4. Results 

 

4.1. Inclusion of texture 

 

We start by examining results for the scene used in the original study: P443_F7170.   

Using the FBD data, the intensity and both texture measures have been used to obtain 

the measures R1, T1 and T2 as shown in sections 3.2 and 3.4.  From these and their 

combinations ROC curves were then prepared by comparison of the detections at a 

series of threshold values with the known deforestation according to the databases 

(see section 3.1).  As anticipated from the results of Table 3, the detection rate for the 

single measures is in the order R1>T2>T1.   Combination of either texture measure 

with R1 using the range-scaled summation technique (Section 3.6) improves the 

detection performance, but a combination of all three measures cannot improve on the 

result for the 2-way combination sums-R1-T2.  There is always a trade-off between 

false alarm and detection but these figures indicate that the main region of practical 

use lies between 0.1 and 0.2, where the curves deviate most from a diagonal line ( 

(0,0) to (1,1)) that could be achieved by randomly choosing pixels.  However, 

combination using sums gives a clear advantage over this range (see Fig. 2(b)) with 

the best result obtained by combining R1 and T2; the further inclusion of T1 gives no 

advantage and is slightly detrimental.  Notably at very low Pfa (<0.02) there is nothing 

to be gained by combination, the intensity measure R1 alone is as good as any. 
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Figure 2 .  ROC curves for the FBD scene P443_F7170, comparing detection 

rates obtained using (from the top of the legend); R1: the modified  intensity 

ratios (eq. (2)), T1, T2  modified ratios obtained using the textural measure 

tex1 and tex2 respectively;  sums-R1-T1 sum-fusion of  R1 and T1;  sums-R1-

T2 sum-fusion of  R1 and T2;  sums-R1-T1-T2:  3-way range-scaled sum 

fusion of R1, T1, T2. For: (a) full range; (b) detail at low Pfa. 

 

In the original study we combined R1 with multi-temporal ScanSAR results, SD, and 

obtained enhancements of ~10% over R1 alone.  Further combinations including the 

textural measure T2 are shown in figure 3.  The best combination over the range Pfa = 

0.1-0.2 is the principle component combination of R1, T2 and SD which narrowly 

exceeds the sums combination of the same components at Pfa = 0.1 and 0.2.  Again the 

inclusion of T1 in the combination is detrimental.   It is again clear that for very small 

Pfa (<0.02) the FBD R1 measure alone cannot be improved on. 
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Figure 3.  ROC curves for the FBD scene P443_F7170, comparing detection 

rates obtained by including texture T2 and ScanSAR SD. using (from the top 

of the legend); R1: the modified  intensity ratios (eq. (2)), T2 : modified ratios 

obtained using the textural measure tex2;  SD: ScanSAR temporal standard 

deviation;  sums-R1-T2 sum-fusion of  R1 and T2;  sums-R1-T2-SD sum-

fusion of  R1, T2 and SD;  PCA1-R1-T2-SD: first principle component 

combination of R1, T2, SD.  For (a) full range; (b) detail for low Pfa. 

 

 

Detection maps for the individual measures and the best combination method are 

compared with the database map of deforestation in figure 4.   The similarity between 

the maps obtained using T1 and T2 (Figure 4(c) and (d)) are clear, as is the difference 

between these maps and that obtained using intensity, figure 4(a).  The oblong feature 

right of centre, labelled “A” on the database map figure 4(f), stands out clearly as a 

region of low HV scattering in an RGB image of the scene (see supplementary 

information)(Whittle et al. 2011), is clearly picked out by R1 and ScanSAR SD but 

only the boundaries show using the texture measures (Fig. 4(c) and (d)).  However, 

the nearby anvil-shaped triangular region of deforestation, labelled “B” in figure 4(f), 

shows as a weak feature in the RGB image, is hardly visible using R1, but is picked 

out by the texture measures and by the ScanSAR results Figure 4(b).  In combination 

these detections reinforce each other to show the feature quite clearly at the 20% 

threshold level in figure 4(e).  The ScanSAR result, figure 4(b) is relatively clear of 

salt-and-pepper type noise and it seems that the combined result 4(e) benefits from 

this in comparison to the single measures R1, T1 and T2.   
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Figure 4.  Detection maps for the FBD scene P443_F7170.  In each case the white 

background represents the extent of natural forest in 2007 overlaid with detections at 

the, (red) 10%, (green) 20% and (blue) 30% acceptance thresholds. (a)  R1;  (b)  SD; 

(c) T1; (d) T2; (e) the best combination result PCA1-R1:T2:SD; (f) showing the 

database estimate of deforestation during 2007-8 in red.  The labelled regions “A” and 

“B” are referred to in the text. 
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4.2 Transferability 

 

The scene P443-F7190 (Figure 1(c)) shows part of the Kampar peninsular, a region 

that includes a peat dome(Hooijer et al. 2010; Pearce 2007) some 15m deep.  It 

appears as a darker patch on the RGB image (see supplementary information) 

indicating a lower level of backscatter in both channels. Detection maps for the 

individual measures and the best combination method are compared with the database 

map of deforestation in figure 5.  The vicinity of the peat dome region appears in the 

ScanSAR multi-temporal result Figure 5(b) as a large white patch left of centre, 

indicating a scarcity of detections and a relatively stable region.  In contrast, some 

significant changes in this area are shown using R1 in figure 5(a), which in fact appear 

in both the HH and HV components of R1.  The two textural measures (figure 5c, d) 

again show very similar pattern of detection to each other but fail to distinguish the 

peat dome from the surrounding forest.  The best detection probability for 

deforestation in this case is achieved by the sum-rule fusion of all four measures, 

sums-R1-T1-T2-SD, which exceeds the principle component combination of the same 

set by 4% at Pfa = 0.2.  It also narrowly exceeds the PCA combination of R1, T2 and 

SD (the best combination for P443-F7170) by 1% at Pfa = 0.2. 

 

Detection rates at Pfa = 0.1 and 0.2 for all measures and their combinations are 

compared in figure 6 for the four scenes.  These figures reveal that the ScanSAR 

temporal standard deviation is not in general as good as R1 and also that there is a 

good deal of variation between the behaviour for the different scenes.  They also show 

that T2 is always slightly better than T1, and that in one case, P443-F7190 – (Figure 

6(b)) , both texture measures give a better retrieval performance than R1 alone.   T2 

(but not T1) improves on R1 for P445-F7170 (Figure 6(d)).  Detection rates for P445-

F7170 are uniformly lower than for other scenes (Figure 6(d)), and this is possibly 

because they are compromised by the significantly mountainous terrain of this scene. 

Working on boreal forests, Thiel et al. (Thiel et al. 2006), have noted that topography 

can increase the spread of SAR backscatter making it more difficult to discriminate 

between forest and non-forest areas.  The performance of ScanSAR SD for this scene 

is particularly poor.   
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Figure 5 In each case the white background represents the extent of natural forest in 

2007 overlaid with detections at the, (red) 10%, green 20% and blue 30% acceptance 

thresholds. (a)  R1av;  (b)  SD; (c) T1; (d) T2; (e) the best combination result 

R1:T1:T2:SD-sums; (f) showing the database estimate of deforestation during 2007-8 

in red.   
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In order to compare the consistency of change-measure performance between the 

different scenes, we take the detection rate obtained using R1 as an internal standard 

and consider other change measures in relation to it.  We define the degree of 

detection enhancement, E, for a measure M over the basic result for R1 as, 

 

                   11 RPRPMPE ddd       (11) 

 

where  MPd refers to the detection rate for measure M. and both detection rates are 

measured at the same Pfa.  The enhancement values are plotted at Pfa = 0.1 and 0.2 for 

each scene in Figure 7.    These plots show that combination is clearly a successful 

strategy for P443-F7190, Fig. 7(c), but is less so for the geographically adjacent P443-

F7180 Fig. 7(b). The detection rate obtained using R1 alone, Fig 6(b), was relatively 

high for P443-F7180 and it could be that there is less room for improvement.  They 

also show that in general the ScanSAR multi-temporal technique is almost as good as 

the FBD ratio method at Pfa = 0.2 except for P445_F7170, again probably due to the 

mountainous terrain for this scene.  ScanSAR SD is generally less effective than R1 at 

low Pfa.  Fig. 7(d) also shows that the relatively poor detection rate for ScanSAR SD 

suppresses most combinations that include it, the exceptions being those that were 

performed by PCA.  Relatively poor performance by SD is also found in P443-F7180, 

Fig. 7(b), and similarly tends to suppress combination by all sum-rule combinations 

that include it.  Combinations using PCA however, again give positive enhancement. 

A comparison of figures 7(b) and (d) thus show a similar pattern for the results at Pfa 

= 0.1.   A comparison of all plots in Figure 7 further shows that the combination of R1 

with texture measure T2 enhances all results and is in all cases better than a 

combination with T1.  It is also better than PCA combinations that include SD when 

the SD retrieval is poor i.e. P443-F7180 and P445_F7170 figures 7(b) and (d).   In 

fact, for P445_F7170, the inclusion of SD with R1 and T2 either by sums fusion or by 

PCA reduces the detection performance of the combination measure using only R1 

and T2. 
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Figure 6.  Comparison of detection rates for single detection measures and for 

combinations: ■ at Pfa = 0.1;  ■ at Pfa = 0.2.  (a) P443-F7170; (b) P443-F7180; (c) 

P443-F7190; (d) P445-F7170.   
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Figure 7.  Comparison of detection enhancement compared with R1 for single 

measures and combinations as shown on the abscissa. : ■ at Pfa = 0.1;  ■ at Pfa = 0.2.  

(a) P443-F7170; (b) P443-F7180; (c) P443-F7190; (d) P445-F7170.   

 

 

The best detection rates obtained for each scene are summarised in Tables 6(a) and (b) 

for Pfa = 0.1 and 0.2.  There is no consistent overall winner; however it is clear from 

the enhancement plots in Figure 7 that the combination of R1 and T2 with or without 

SD is, consistently useful.  The inclusion of T1 rarely gives any extra improvement, 

thus the combination of all four measures is not usually optimal but does perform best 

for P443-F7190 (the 4-way sum-rule combination improves on sums-R1-T2-SD by 

5.4%).  There is no consensus in these tables about whether PCA or sums is the best.  

The inclusion of SD is positive 5 times out of 8 – however it is not helpful for the 

mountainous region (P445-F7170).     

 

The fraction of forest that is deforested during 2007-8 is much less for scenes P443-

F7180, P443-F7190 and P445-F7170 than for P443-F7170, which was the subject of 

the original study (Table 6).  The threshold values give the percentage of natural 

forest in the nf07 database for each scene that was accessed to achieve the Pfa values 

given.  Because we know the fraction of forest that is deforested between the nf07 and 

nf08 databases these values can be used to calculate the Precision, Pr, – the 

probability that a detected pixel is in a deforested region.  The Precision is defined as 

 

raPr       (11) 
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Where r is the total number of pixels retrieved by detection and a is the number of 

detected pixels that are correctly assigned.  The detection rate (sometimes called the 

Recall) is  

kaPd        (12) 

where k is the total number of pixels that are actually part of the deforested region.  

We have defined the detection threshold Th as the percentage of pixels that are 

retrieved from the whole region searched, which we suppose contains n pixels.  

Hence,  

nrTh 100      (13) 

The Precision is then    

f

h

d

h

d

r D
T

P

nT

kP
P 100100      (14) 

Where nkD f   is the fraction of the searched region that is actually deforested.  

These values are given in the final column of Table 6 and the low values recorded for 

the new scenes reflect the difficulty of finding areas of deforestation when it makes up 

only a small proportion of the total area.    

 

Table 6 also shows that the threshold value needed to achieve Pfa = 0.2, say, also 

depends on the proportion deforested.   In use, these techniques would be applied to  

regions that have, by definition, an unknown proportion of deforestation, but the 

detection maps using threshold values 10%, 20% and 30% mostly cover the range of 

thresholds used in Table 6 to achieve Pfa values between 0.1 and 0.2.   

 

 

Table6a Summary of best results by scene at Pfa=0.1 

Scene DF- 

fraction 

Threshold 

% total 

Combination Detection 

rate 

Precision 

P443-F7170 0.301 27.7 PCA-R1-T2-SD 0.689 0.784 

P443-F7180 0.090 16.0 sums-R1:T2 0.772 0.432 

P443-F7190 0.058 12.8 sums-R1:T1:T2:SD 0.592 0.266 

P445-F7170 0.081 12.3 sums-R1:T2 0.383 0.253 

 

Table6b Summary of best results by scene at Pfa = 0.2. 

Scene DF- 

fraction 

Threshold 

% total 

Combination Detection 

rate 

Precision 

P443-F7170 0.301 38.8 PCA-R1-T2-SD 0.824 0.639 

P443-F7180 0.090 26.1 PCA-R1-T2-SD 0.879 0.302 

P443-F7190 0.058 22.9 sums-R1:T1:T2:SD 0.702 0.177 

P445-F7170 0.081 22.5 sums-R1:T2 0.508 0.183 

 

The combinations that gave the best results at Pfa= 0.2 (Table 6b) have been used to 

compile the detection maps in Figure 8.    Although quite a good visual comparison is 

evident between the detections for P443-F7180 and the database map, the river basins 

are clearly incorrectly highlighted.  This error is mainly due to the introduction of 

ScanSAR data which, as we have noted, is known to be sensitive to flooding.  

Notably, the detection map, Fig. 9, obtained using sums-R1-T2, which was the best 

combination at Pfa = 0.1 (Table 6a), does not suffer from this error.  At Pfa = 0.2 the 

inclusion of ScanSAR produced a marginal 3.3% improvement in detection rate over 
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sums-R1-T2.  This suggests that in practice, if ScanSAR is available, a comparison of 

results with and without its use would be advised.  However, in practice this sort of 

error would probably be spotted by those familiar with the region.  
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Figure 8   Compares the best combination results (table 6) with database-derived 

maps of deforestation.  The detection maps are coloured: (red) 10%, green 20% and 

blue 30% acceptance thresholds on a white background representing the natural forest 

in 2007.  The associated database maps show regions deforested during 2007-2008 in 

red.  For (a) P443-F7180 (PCA-R1-T2-SD) and (b) database; (c) P443-F7190 (sums-

R1-T1-T2-SD) and (d) database; (e) P445-F7170 (sums-R1-T2) and (f) database. 

Comparable results for F443-F7170 are shown in figure 4.   
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Figure 9.  Detection map using the combination sums-R1-T2 for P443-F7180, with: 

(red) 10%, green 20% and blue 30% acceptance thresholds on a white background 

representing the natural forest in 2007. 

 

Taking the average enhancement values over all of the scenes we obtain Fig. 10, 

which clearly shows that a principle component combination of R1, T2 and SD is the 

overall best choice of combination achieving an average of 24.9% and 23.4% 

enhancement at Pfa = 0.1 and 0.2 respectively.  However, if the ScanSAR temporal 

standard deviation is not available, then the sum-rule combination of R1 and T2 

(which achieve average enhancements of 21.7% and 18.0% at Pfa = 0.1 and 0.2 ) is 

clearly preferred over the combination of R1 and T1.  This suggests that, on the basis 

of our data, these are the best procedures to use in practice when searching for 

deforestation in a new region.   
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Figure 10.  Plot of the average enhancement values over all four scenes: ■ at Pfa = 0.1;  

■ at Pfa = 0.2. 

 

In the absence of any prior knowledge about the areas deforested it is not possible to 

obtain results at a standard value of Pfa; this is only useful for the analysis.  In practice 

results must be obtained at some given threshold level. In the light of our conclusions 

based on a consideration of the average enhancement Fig. 10, Tables 7 a-d give the 

equivalent Pfa, Pd and Pr values for each of the scenes considered here, using the PCA 

combination of R1, T2, SD for the three values of threshold used in developing the 

detection maps.   The equivalent values for the sum-fusion of R1 and T2 are also 

shown.  They show that the Pfa varies considerably at the 20% threshold (green in the 

maps) for the 4 scenes but is always below the 0.2 level used as a standard here.  As 

expected, while values of the detection rate increase with increasing threshold, the 

precision falls.  At the 20% threshold the 3-way combination produces a slightly 

better detection rate only for P443_F7180 and P443_F7190. 



 26 

 

Table 7  
P443_F7170 
PCA1-R1-T2-SD  sums-R1-T2 

Th Pfa Pd Pr  Pfa Pd Pr 

10% 0.017 0.286 0.859  0.017 0.292 0.879 

20% 0.053 0.532 0.799  0.056 0.533 0.801 

30% 0.114 0.72 0.721  0.132 0.682 0.683 

 
P443_F7180 
PCA1-R1-T2-SD  sums-R1-T2 

Th Pfa Pd Pr  Pfa Pd Pr 

10% 0.051 0.592 0.532  0.042 0.667 0.598 

20% 0.136 0.827 0.371  0.139 0.808 0.363 

30% 0.239 0.899 0.269  0.241 0.865 0.259 

 
P443_F7190 
PCA1-R1-T2-SD  sums-R1-T2 

Th Pfa Pd Pr  Pfa Pd Pr 

10% 0.072 0.529 0.305  0.073 0.505 0.291 

20% 0.166 0.664 0.191  0.17 0.619 0.178 

30% 0.269 0.743 0.143  0.27 0.693 0.133 

 
P445_F7170 
PCA1-R1-T2-SD  sums-R1-T2 

Th Pfa Pd Pr  Pfa Pd Pr 

10% 0.077 0.329 0.267  0.078 0.345 0.281 

20% 0.173 0.459 0.187  0.171 0.476 0.194 

30% 0.27 0.553 0.15  0.272 0.577 0.156 

 

5.  Conclusions  

 

We have found that, like the intensity, the textural measures tex1 and tex2 increase or 

decrease in response to deforestation and can be used as indicators of change.  

Paralleling our treatment of intensities, they have been combined to give the modified 

ratio measures T1 and T2; of these T2 has invariably given the better results alone or 

in combination. We have examined results over 4 scenes and on their own these 

measures succeed in detecting deforestation in some cases less and in some more than 

the equivalent intensity measure R1.  The key point however is that they contain 

different information to the intensity-based measure so that when used in combination 

with R1 the detection rate of deforested regions is improved.   When combined with 

R1 using data-fusion summation the modified ratio T2 gave an average enhancement 

of 18.0% at Pfa = 0.2 over the four scenes (Figure 10). The equivalent value for T1 

was 14.0%.  Since T1 and T2 are quite strongly correlated (Table 5c) we have not 

generally found it useful to use both measures in combination.  In the earlier work we 

also achieved enhanced detection of deforested areas by combining R1 with temporal 

standard deviation SD derived from ScanSAR images.  In this work we have achieved 

an enhancement of 15.6% in detection rate at Pfa = 0.2 using sums-R1-SD for the 

scene P443-F7170.  However, the equivalent average result (see Figure 10) for this 

combination is dragged down to just 4.5% by the inclusion of poor performance by 
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ScanSAR SD in other scenes, particularly P445-F7170.  Nevertheless, even including 

this result, the principle component combination of R1, T2 and SD gave the best 

overall enhancement of 23.4% at Pfa = 0.2.  The principle component combination of 

these measures was a significant improvement over the data fusion summation 

technique: the average enhancement for sums-R1-T2-SD was 17.3% at Pfa = 0.2, less 

than the 18% enhancement obtained for sums-R1-T2.  The values obtained using 

these combinations for the individual scenes is summarised in Table 8.  There was 

considerable variation between the results obtained and, as we have already noted, the 

inclusion of ScanSAR SD for P445-F7170 is detrimental to the combination of R1 and 

T2 alone.  

 

Table 8.  Summary of best results obtained for the four FBD scenes. 

 sums-R1-T2 sums-R1-T2-SD PCA1-R1-T2-SD 

Scene Pfa=0.1 Pfa=0.2 Pfa=0.1 Pfa=0.2 Pfa=0.1 Pfa=0.2 

P443-F7170 0.635 0.747 0.676 0.805 0.689 0.824 

P443-F7180 0.772 0.846 0.616 0.846 0.764 0.879 

P443-F7190 0.544 0.644 0.579 0.693 0.582 0.695 

P445-F7170 0.383 0.508 0.290 0.416 0.366 0.487 

 

We have thus shown that the enhancements available by the inclusion of texture into a 

detection algorithm are worthwhile.  The procedure we have described requires only 

FBD images, is straightforward and quick and provides a simple extension to an 

analysis using intensities alone.  The further inclusion of multi-temporal ScanSAR SD 

involves laborious co-registration, excising the FBD footprint region from the results 

and re-sampling to the FBD pixel size.  Our results show that it should not be used in 

combination with the FBD results over mountainous terrain, although it may be that 

compensation using a digital elevation model (DEM) could improve matters(Santoro 

et al. 2009).  This is not possible with the level 1.5 processed data and GAMMA 

software that we have used here.  The procedure would require level 1.1 single-look 

complex data (SLC) data, however this would add an extra layer of complexity to the 

analysis and it must be questioned whether it is worthwhile in relation to the 

enhancements that can be obtained.  A more reasonable approach for monitoring 

would be to use ScanSAR multi-temporal method as a preliminary screen followed by 

the use of FBD with combined intensity and texture measures.  In practice, as a 

monitoring tool, the only accessible variable is the threshold value Th, and, through a 

choice of threshold values, the detection maps.  Table 7 shows that for a 20% 

threshold the inclusion of ScanSAR results only improves enhancement of the 

detection rate and precision for two of the available scenes.  Furthermore, the 

precision values, which give the probability that a detected pixel correctly identifies a 

deforested region, are shown to be very low if the fraction of forest affected by 

deforestation is low.  In this sense the methods described here are best thought of as 

screening tools used to narrow a search before choosing areas that should go forward 

for optical confirmation or ground-based scrutiny. 
 

The focus of this paper has been on the inclusion of textural measures.  However, this 

work has used corrected versions of the original databases and it is notable that this 

has produced slight improvements in the detection rates obtained.  These are 

summarised in Table 9 
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Table 9.  Comparison of values obtained for Pd at Pfa = 0.2 from the original study 

with the results of this work using the updated databases. 

Change measure Original databases Updated databases Change 

R1 0.635 0.652 +0.017 

SD 0.613 0.657 +0.044 

sums-R1-SD 0.718 0.754 +0.036 

 

These improvements in detection are in line with the expectations of the error analysis 

given in that paper.  However, it is worth noting that some of the sources of error 

remain and that the estimates of detection rates given here may still underestimate the 

true values.   
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Appendix 

Dependence of textural measures on window length 

 

We have previously determined that a window length of 23 is optimum for window-

averaged intensity ratios(Whittle et al. 2011).  It is not obvious that the same length 

should also apply to the textural measures either individually or in combination so 

Table A1 compares detection rate, Pd, values for T1 for false alarm rate, Pfa, =0.2 on 

the ROC curve for textures obtained at several window lengths.   

 

Table A1a. Detection rates at Pfa=0.2 obtained from ROC curves for FBD image 

P443_F7170 as a function of window length (wl) for tex1 and tex2 values.  

Combinations are made with R1 prepared using a window length of 23.  The 

comparable detection rates for R1 and SD alone are 0.635 and 0.613 respectively.   

The final column, PCA1, refers to the first component of a principle component 

analysis using all four descriptors.  

   Combination by sums PCA1 

wl T1 T2 R1:T1 R1:T2 R1:T1: 

SD 

R1:T2: 

SD 

R1:T1: 

T2:SD 

R1:T1: 

T2:SD  

7 0.451 0.473 0.666 0.680 0.732 0.745 0.678 0.640 

11 0.487 0.521 0.702 0.702 0.775 0.761 0.729 0.688 

15 0.516 0.558 0.707 0.724 0.784 0.783 0.765 0.721 

19 0.540 0.588 0.705 0.738 0.786 0.797 0.785 0.746 

23 0.561 0.614 0.703 0.747 0.786 0.805 0.797 0.765 
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Table A1b. Detection rates at Pfa =0.1 obtained from ROC curves for FBD image 

P443_F7170 window length, wl = 23   for tex1 and tex2 values.  The comparable 

detection rates (at Pfa =0.1) for R1 and SD are 0.527 and 0.419 respectively.  

   Combination by sums PCA1 

wl T1 T2 R1:T1 R1:T2 R1:T1: 

SD 

R1:T2: 

SD 

R1:T1: 

T2:SD 

R1:T1: 

T2:SD  

23 0.424 0.485 0.591 0.635 0.656 0.676 0.667 0.625 

 

Columns 2 and 3 of Table 1 show that retrieval using the textural measures increases 

with window size up to the maximum of 23.    Detection rates for the combination 

with values of R1 (windowed at length 23) pass through a small maximum at wl=15 

for tex1 while for tex2 they also increase up to the maximum window size.   When the 

ScanSAR temporal standard deviation values, SD, are included in the combination 

(columns 6-9 )  results essentially reach a plateau for T1 and increase up to the 

maximum window size when T2 is included.  Combination of all four descriptors 

either by range-scaled summation or using the first component of a principle 

component analysis (PCA1) does not improve on the 3-way range-scaled summation 

of R1 ,T2 and SD and the best result is obtained using a window size of 23 to prepare 

the textural measure.  Table 1b shows that the same conclusion holds for results at a 

false alarm rate of 0.1 at wl = 23.  The results given here were therefore prepared 

using textures obtained with wl=23.   
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Figure S1.  RGB images of the four FBD scenes used.  The HH, HV and HH/HV data 

in the FBD image take the red, green and blue channels respectively. (a) P443-F7170 

(28/06/2007);  (b) P443-F7180  (28/06/2007);  (c) P443-F7190  (28/06/2007)(d) 

P445-F7170 (01/08/2007). 
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Figure S2.  RGB images of the four FBD scenes used.  The HH, HV and HH/HV data 

in the FBD image take the red, green and blue channels respectively. (a) P443-F7170 

(30/06/2008); (b) P443-F7180  (30/06/2008);  (c) P443-F7190  (30/06/2008)(d) P445-

F7170 (03/05/2008). 

 

 

 

 


