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Abstract  

 

Indonesia has one of the highest rates of deforestation in the world, leading to a significant 

impact on planetary carbon balance and loss of biodiversity.  It also covers a vast and often 

inaccessible area frequently obscured by cloud, making accurate, timely monitoring of its 

forests difficult.  Spaceborne Synthetic Aperture Radar (SAR) images are unhindered by 

cloud and can provide clear images whenever there is a satellite pass, hence provide a 

potentially important tool for monitoring forest changes. Over Sumatra, the JAXA Advanced 

Land Observing Satellite (ALOS) PALSAR L-band radar provides both ScanSAR HH 

polarisation with repeat images every 46 days, thus providing much more frequent clear 

imagery than other available rapid deforestation monitoring tools, and approximately annual 

Fine-Beam Dual (FBD) image pairs with HH & HV polarisations. Temporal analysis of 

ScanSAR images shows that deforestation in the Sumatran province of Riau can be identified 

by large values of the temporal standard deviation, but high detection rates are associated with 

high false alarm rates, particularly in swamp forest. There does not appear to be a reliable 

signature of the onset of forest disturbance in the ScanSAR time-series. Deforestation can also 

be detected with annual change measured in FBD data. The best performance is achieved by 

combining increases and decreases in both the HH and HV channels, since all four indicators 

of change are complementary. This indicates the variety of the processes that may be involved 

in assigning a physical basis to the radar signature of deforestation. Significant improvements 

in performance are possible by combining FBD and ScanSAR data, giving 70% detection of 

deforestation for a false alarm rate (detection of deforestation in undisturbed forest) of 20%. 

Error analysis based on (a) likely errors in the Landsat data used to provide a reference for 

deforestation and (b) differences between the times of acquisition of the Landsat data and the 

FBD data suggest that the true detection rate for the FBD data is underestimated. All the 

analysis in the paper uses fully automatic methods, but it is likely that false alarms in the 

ScanSAR data due to periodic flooding could be reduced by human inspection. The 

performance figures reported here could also be improved if knowledge about the locations of 

dry and swampy forest was included in the methodology. 
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1. Introduction 

 

The rate of tropical deforestation is reported to have decreased from 0.16 M km
2
 yr

-1
 in the 

1990s to 0.13 M km
2 

yr
-1

 in the first decade of the 21
st
 century (FAO 2010), but destruction of 

natural forest is still a major source of carbon dioxide emissions (estimated as 16% of the 

anthropogenic emissions since 2000; (Le Quéré 2010)) and a primary factor in loss of 

biodiversity. However, there is huge uncertainty in these estimates and the associated 

emissions (Achard et al. 2002; Houghton 2005a; Le Quéré 2010)  Reducing this uncertainty is 

crucial to assessments of global carbon balance for climate modelling and harnessing political 

will for change. Current efforts to provide economic incentives to reduce deforestation 

through the United Nations Framework Convention on Climate Change Reduced Emissions 

from Deforestation and Degradation (REDD+) mechanism (Parker et al. 2009; UNFCCC 

2007, 2011) are also dependent on reliable, independent estimations of deforestation rates 

(Goetz et al. 2009).  

 

Indonesia is one of the few remaining countries in the world with extensive natural forest 

cover and associated biodiversity, but has one of the world’s highest rates of forest loss and 

associated greenhouse gas emissions from forest degradation and loss. According to (Hansen 

et al. 2009; Hansen et al. 2008), Indonesia's current deforestation rate of 3.4% per year is 

second only to that of Brazil among countries with humid tropical forests.  Deforestation in 

Indonesia ranges from selective logging to large-scale clearance for pulp wood and 

agricultural plantations.  Given the vast and remote areas, efficient monitoring of these losses 

must depend on satellite-based techniques. However, (Fuller 2006) contrasts the success of 

forest monitoring in Brazil with the situation in Indonesia, where inadequate monitoring and a 

lack of transparency and accountability has created an urgent need for independent 

verification. 

 

Remote sensing of forest disturbances using optical, short-wave or near-infrared reflectance 

and thermal spectra is well established (Fuller 2006; Hais et al. 2009), but in tropical regions 

its usefulness is frequently limited by haze from forest fires and cloud cover, especially during 

the seasonal monsoon. Synthetic Aperture Radar (SAR), operating at microwave frequencies, 

is not hampered by this problem and allows regular long-term monitoring (Podest and Saatchi 

2002).  

 

The Japanese Aerospace Exploration Agency (JAXA) Advanced Land Observing Satellite 

(ALOS) (Rosenqvist et al. 2007) became fully operational in June 2006 and includes a Phased 

Array L-band Synthetic Aperture Radar (PALSAR) operating at 1270 MHz (a wavelength of 

26.4 cm) that provides a number of image products.  In this paper we investigate the 

effectiveness of ScanSAR and Fine Beam Dual (FBD) images, both separately and in 

combination, for monitoring tropical deforestation. ScanSAR images typically cover 359 km 

in range and 379 km in swath, i.e. 136000 km
2
, and are acquired with the same geometry once 

every 46 days, hence are well suited to monitoring large regions for changes associated with 

deforestation.  FBD images consist of image pairs at HH & HV polarisation, with dimension 

69.8 km in range by 58.6 km in azimuth, with repeat images usually acquired at 3 times a year 

during June, July and September. Hence they lack the time or space coverage of ScanSAR, 

but the HV channel is expected to give significant advantages for detection of deforestation 

(Leckie and Ranson 1998). 
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The principal objective of this paper is to assess the ability of ALOS-PALSAR to monitor 

tropical deforestation using a case study in Sumatra. This is addressed in three stages:  

1. Development of methods to detect changes associated with deforestation in ScanSAR 

data, and evaluation of whether 46-day HH data allows accurate detection of the onset 

of deforestation. This is to assess whether ScanSAR data can be used to trigger rapid 

response to illegal logging (as in the MODIS-based Brazilian DETER system 

[www.obt.inpe.br/deter]).  

2. Development of methods to detect deforestation in time-separated FBD images, and 

evaluation of whether they lead to acceptable performance for deforestation detection. 

3. Evaluation of whether combining FBD and ScanSAR yields superior results. 

The methods developed are intended to allow ALOS-based forest monitoring to be carried out 

in a scientifically robust manner, preferably at technician level. A broader goal is to provide 

the Indonesian and global community with tools for using ALOS-PALSAR data that allow 

transparent, accurate and frequent tracking of natural forest cover change, independently of 

cloud and haze, and that can be used as a basis for action on forest carbon management and 

biodiversity conservation.  The knowledge gained by this activity should also contribute 

towards a better understanding of the land carbon cycle.   

 

Because this study has strong implications for potential uses of ALOS-PALSAR in 

monitoring tropical forests (for example, in REDD or through the Group on Earth 

Observations Forest Carbon Tracking initiative [http://www.geo-fct.org/]), we give a 

thorough description of the methods and our efforts to optimise them. We provide quantitative 

assessment of ScanSAR alone, FBD alone and their combined use to detect deforestation, and 

discuss the accuracy of these assessments, given uncertainties in the data used to test them. 

Our conclusions summarise the results, and indicate further work needed to assess their wider 

significance in the monitoring of tropical deforestation. 

 

2. Data 

2.1 Study area: ground and satellite data coverage 

 

Sumatra has the most intense recent large-scale forest clearance in Indonesia, with the 

province of Riau recording the highest degree of change (Hansen et al. 2009). A very detailed 

land cover database for the Riau & Jambi regions, based on Landsat imagery for 2007, was 

provided by WWF (Uryu et al. 2007). This distinguishes 49 types of land cover, including dry 

lowland forest, mangrove forest, peat-swamp forest and swamp forest types.  Each of these 

four types of natural forest is subdivided into three levels of cover, designated as rather closed 

canopy, medium open canopy and very open canopy.  A second WWF database, derived from 

Landsat imagery in 2008 and 2009, is less detailed, but delineates natural forest and non-

natural forest regions over a smaller area partially overlapping the 2007 database (Uryu et al. 

2010). To use both databases, we amalgamated land cover into just nine classes (see Table 1), 

which included two types of natural forest, “dry” and “swampy” (usually peat swamp), 

derived from the WWF 2007 database. The natural forest indicated as lost between the 2007 

and 2008 databases is used as our reference for deforestation.  All the accuracy analysis in this 

paper is based on the assumption that the databases themselves are accurate, but Section 5 

discusses the effects of relaxing this assumption.  
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Table 1 Land cover types in the amalgamated WWF databases 

 

 

This study uses a set of twelve ScanSAR images, centred on 1.728° S, 102.332° E (Path 115, 

Frame 3650), that cover much of the intersection of the two WWF land-cover databases.  The 

supplied data were processed by JAXA at the 1.5 level (which includes radiometric 

correction, range and multi-look azimuth compression, geocoding and orthorectification) and 

were converted to intensity with GAMMA software (http://www.gamma-rs.ch/) using the 

standard calibration factor of -83 dB (Rosenqvist et al. 2007).  The images are HH-polarised 

with 100 m  100 m pixel spacing across a swath of width 359 km and along-track dimension 

379 km. The incidence angle varies from 18.0° to 43.0°
 
across the swath. All the images have 

the same geometry and form an unbroken sequence with 46-day temporal separation running 

from 31/01/2007 to 20/06/2008.  We also analysed FBD images from path 443, frame 7170, 

acquired on 28/06/2007 and 30/06/2008, which cover part of the ScanSAR scene; these are 

referred to as FBD-1 and FBD-2 respectively. In addition, a third FBD image (FBD-3; Path 

443, Frame 7180) acquired on 30/09/2008 lying just to the north of FBD-1&2 is used in 

Section 4.3. The FBD data are HH-HV image pairs, also processed at the 1.5 level, with 12.5 

m  12.5 m pixel spacing and incidence angle from 36.6° to 40.9°.  The swath width is 69.8 
km and the along-track dimension 58.6 km.  

 

The acquisition dates of the various satellite images contributing to this study are given in Fig. 

1. Fig. 2a shows the coverage of the databases and the ScanSAR images, with the common 

overlap between all three types of data indicated by a yellow outline. This overlap, which has 

a total area of 2428358 ha, will be referred to as region “Y”. Also shown is the area covered 

by the FBD images within region Y. Fig. 2b shows the distribution of dry and swampy forest 

in region Y, together with the areas deforested between 2007 and 2008 in each type of forest.  

Natural forest accounts for 979159 ha (40.3%) of region Y in the WWF 2007 database; of 

this, 151380 ha (15.5% of the forest area) had been deforested by 2008.  Approximately 

64.1% of the original forest area consisted of dry forest while 35.6% was swampy. The 0.3% 

discrepancy arises at region margins where pixels are sometimes classified as both types.  

This can happen when the borders between regions defined by vector graphics bisect pixels in 

raster-based images.  

 

Land cover Types 

Natural forest (swampy) 

Natural forest (dry) 

Shrub, grass, fern   

Regrowth (all types, including forest, shrubs, semak, belukar muda) 

Plantation (rubber, oil palm, acacia, coconut) 

Paddy fields 

Water 

Agricultural (mixed agriculture, mixed garden) 

Cleared (cleared post-acacia, harvested, etc). 

http://www.gamma-rs.ch/
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Fig. 1. Acquisition timeline for satellite data used in this study.  The 12 ScanSAR images were 

acquired at intervals of 46 days between 31/01/2007 and 20/06/2008.  The three FBD images 

were obtained on 28/06/2007, 30/06/2008 (P443, F7170) & 30/09/2008 (P443, F7180). For the 

WWF databases, the study area is covered by Landsat images for path 126, rows 60 and 61 

(indicating position in the azimuth direction). For the 2007 database they were acquired on 

23/04/2007 for row 60 and 14/11/2006 for row 61; the corresponding dates for the 2008 

database were 22/07/2008 and 24/09/2008 respectively.   
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Fig. 2. (left) Part of a ScanSAR image of the Riau and Jambi regions of Sumatra overlaid by 

the WWF 2007 land-cover database (shown with white outlines) and the WWF 2008 database 

(the large rectangle, in which green and red parts indicate natural forest and non-forest 

respectively).  The ScanSAR image is a RGB composite of images acquired in Jan. 2007, Sept. 

2007 and June 2008.  The two databases and the ScanSAR footprint intersect in the region Y 

outlined in yellow.  Enclosed by region Y is the FBD scene discussed in section 4.2, shown as 

a RGB composite of the HH and HV channels and the HH/HV ratio; (right) RGB image 

showing the areas of natural forest and deforestation derived from the 2007 and 2008 databases 

in region Y.  Red and green indicate dry and swamp forest respectively.  Regions deforested in 

the interval between construction of the two databases are shown as pink and light blue in the 

dry and swampy areas respectively. 

3. Methods 

3.1 Pre-processing of the time-series of ScanSAR data 

The detection of deforestation relies on observing change over time, and requires some basic 

pre-processing. The ScanSAR images were first co-registered using GAMMA software. A 

multi-channel filter (Quegan and Yu 2001) was then applied with window size 5×5 to reduce 

speckle; this increased the estimated equivalent number of looks from 6.7 for an unfiltered 

image to 31.9 for each of the filtered ScanSAR images. The whole image sequence could then 

be compared at the pixel level. Initial comparisons revealed that the mean backscatter from 

the forest regions varied by almost 2 dB over the 18-month period, as shown in Fig. 3.  The 

highest values occur in the images acquired on 31/01/2007 and 19/12/2007, corresponding to 

the seasonal high monsoon rainfall between November and March (200-300 mm/month), 

while the lowest values occur for the images acquired on 03/08/2007 and 20/06/2008 in the 
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“dry” season (75-150 mm/month).  Fig 3a and 3b differ in that the areas used to measure the 

forest backscatter are taken from the 2007 and 2008 databases respectively.  

 
Fig. 3.   Average intensity as a function of time for the whole ScanSAR scene ( ─ ), and for 

the areas of swamp (-●-) and dry forest (-○-);  the forest values are derived from (a) the 2007 

WWF database, and (b) the 2008 WWF database. 

 

It is necessary to remove these trends in order to detect local intensity changes that are caused 

by deforestation and are of comparable magnitude.  This was achieved by rescaling the data 

so that the mean forest intensity in each image became equal to the time-average of the 

overall mean forest intensity, i.e. all pixels in the k
th

 image were multiplied by the factor 

),(/ kII ff
where )(kI f

 is the mean forest intensity in the k
th

 image and 
fI  is the overall mean 

forest intensity obtained by averaging these values. The forest area used was that in the 2007 

database; although this area shrunk by ~15.5% in the interval between the formation of the 

databases, Fig. 3 shows that this makes little difference to the normalisation. Hence use of the 

known forest prior does not lead to any significant bias.  

 

Fig. 4 shows time-series of such normalised data in areas designated as deforested (Fig. 4a-b) 

and in undisturbed natural forest (Fig. 4c-e). The time-series for each pixel in a 5×5 window 

is shown, with the mean and the mean ±1 standard deviation (SD) of the overall forest 

intensity indicated as horizontal lines. Fig. 4a shows a large increase in backscatter (up to 

~3.14 dB) associated with deforestation, but deforestation can also occur without sharp 

changes or significant variation in backscatter (Fig. 4b). Similarly, very different types of 

behaviour can occur in undisturbed forest, from significant trends and variability (Fig. 4c-d) 

to little change (Fig. 4e).  

3.2  General change detection measures 

 

C- and L-band HH measurements in temperate and boreal regions have indicated that forest 

areas tend to exhibit more stable backscatter than other land cover types (Quegan et al. 2000). 

Hence it was expected that general change detection methods would be effective in detecting 

the presence of deforestation in the ScanSAR time-series, before more detailed analysis 

locating the onset of the event within the series.  The change measures considered were: 

 

Range:      Imax(x) - Imin(x)     (1) 

SD:       
2

1

1

2
)(),(
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1
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









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
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Mean absolute variation from the mean: 
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Maximum inter-image change:     ),(),(max 1
11

max ii
Ni

c tItII xxx  


  (5) 

Minimum absolute inter-image change:    ),(),(min 1
11

min ii
Ni

c tItII xxx  


  (6) 

where Imax(x) and Imin(x) are the maximum and minimum intensity values in the time-series at  

position x, 



N

i

itI
N 1

),(
1

)( xx  is the temporal mean intensity at position x, and the images 

were acquired at times ti, i = 1-N. In addition, at each pixel we measured the net change in 

intensity from its initial value: 

         .,)1(,,,)( 1

22

1 tINtItItII
N

i

i

N

i

isum xxxxx  


    (7) 

 

The distribution of values for any of these measures can be summarised by a probability 

density function (PDF) and the corresponding cumulative frequency distribution (CFD). 

Examples of the PDFs and CFDs for the temporal SD of deforested areas and natural forest 

are shown in Fig. 5; they are calculated over the WWF 2007 forest region within the region Y 

shown in Fig. 2. 
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Fig. 4.  ScanSAR time-series for each pixel in a set of 5×5 windows located in areas 

undergoing deforestation (Fig. 4a-b) and undisturbed forest (Fig. 4c-e). The horizontal dot-

dash lines indicate the mean overall forest intensity and the dotted lines show 1 SD on either 

side. 

 

From the CFDs we can find the proportion of pixels whose value exceeds a given threshold 

and hence, for any fixed threshold, the probability detection for deforestation, Pd, and the 

false alarm probability for undisturbed forest, Pfa. The use of an approach based on detection 

concepts rather than classification is more appropriate for deforestation, which is normally a 

rare event (though in region Y, 15.5% of the natural forest is lost in the period between the 

formation of the two databases). Bayesian methods therefore strongly weight the 
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classification towards undisturbed forest, and typically would fail to classify any of the pixels 

as deforested (this would be the case for the PDFs shown in Fig. 5).  

 

 

Fig. 5. (a) PDFs of the temporal SD in undisturbed forest ( ─ )  and deforested regions (-○-);  

(b) the corresponding CFDs .  

 

A useful way to assess detection performance is through the “receiver operating 

characteristic” (ROC) curve, which plots Pd against Pfa; each point on this curve corresponds 

to a particular threshold value. ROC curves for the various change measures are given in 

Fig. 6.  These demonstrate that, except at unacceptably low detection probabilities, the 

temporal SD gives the highest detection rate for a given false alarm rate (although the range 

measure gives almost the same performance). The change measures are highly correlated, so 

combining them (for example using Principal Component Analysis) does not improve the 

performance achieved by the temporal SD alone. This single measure of change is therefore 

adopted in the rest of the paper. 

  

 

Fig. 6. ROC curves for the following change measures: SD ─●─; σmax  ─■─; (Imax–Imin) ─○─;   

Vm ─◊─; Imaxc ─▲─;  Iminc ─Δ─;   |Isum| ─□─. 
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3.3  Measuring change in FBD images 

This study uses pairs of FBD multi-channel filtered intensity images of the same scene 

gathered approximately a year apart to measure change in forest regions.  As for ScanSAR 

(Section 3.1), the images were first normalised to the same average forest intensity: all pixels 

in the k
th

 image (k = 1, 2) were multiplied by  kII ff / , where )1(fI  and )2(fI  are the 

average forest intensities of images acquired at times t1 and t2, and 
fI  is their mean, i.e. the 

overall average forest intensity This was carried out separately for the HH and HV images.  

 

Change detection is based on image ratios, for which accurate results require the data to be 

heavily averaged (Rignot and van Zyl 1993); we use 23×23 averaging windows, for reasons 

discussed in Section 4.2. We consider two change measures, )(/)( 12 xx II , which is positive 

(negative) if intensity increases (decreases), and one which combines both sorts of change: 

 

 
 
 

 
 

1,max
1

2

2

1
1 










x

x

x

x
x

I

I

I

I
R .      (8) 

 

The value of R1 is zero if there is no change and otherwise is positive;  statistics of a related 

measure using the min operator are discussed in (Touzi et al. 1988).  For simplicity, 

throughout the paper we use the same notation, Ik(x), for both the original data and 

normalised, window-averaged data. 

4. Results 

 

4.1 Detecting deforestation using ScanSAR data 

 

As indicated by Fig. 6, choice of a threshold on the temporal SD fixes the detection and false 

alarm probabilities. Images showing true detections and false alarms for the forested areas in 

region Y are shown in Fig. 7a and 7b for false alarm rates of 23.6% and 6.8% respectively 

(corresponding to the 30th and 10th percentiles respectively).  The northern part of the forest 

area in Fig. 7a has a high proportion of false alarms clustered around the point marked 

Location A (0° 16’ 25.32’’ S, 102° 58’ 12.636’’ E) and along the adjoining river valley.  This 

region is designated as swamp forest in the WWF 2007 database, and a ground survey on 18
th

 

June 2009 confirmed it to be a frequently flooded peat swamp forest with very open canopy 

containing palm, pandan and rattan.  The temporal sequence of backscatter at point A is 

plotted in Fig. 4c, while Fig. 4d shows the sequence for a point about 1.7 km to the south-west 

that could not be reached by the surveyor because of flooding and dense vegetation. 
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Fig. 7.  Images of the forest areas in region Y, with the red and green channels assigned to 

pixels that were respectively deforested and undisturbed between 2007 and 2008, according to 

the WWF databases.  The blue channel is assigned to pixels whose temporal SD exceeds a 

threshold corresponding to false alarm rates of (a) 23.6% and (b) 6.8%. Thus magenta 

indicates true detection of deforestation and light blue indicates false alarms in undisturbed 

forest.  Location A gives the approximate location of a point that was ground surveyed.  

4.1.1 Dry and swampy forest regions 

 

The study area contains dry and swampy forest. When undisturbed, both have average 

intensities of about -7 dB, but dry forest exhibits higher spatial variability: the average of the 

SDs of spatial intensity in the 12 images is 0.0720 (-11.4 dB) for dry forest and 0.0526 (-12.8 

dB) for swamp forest. In contrast, temporal variability is greater in swamp forest, as shown by 

the PDFs of temporal SD in Fig. 8a (here the total PDFs for undisturbed forest and 

deforestation are the same as those in Fig. 5a). It can be seen that:  

 The modal value for deforested pixels is significantly higher in swamp forest than dry 
forest, so the detection rate in swamp forest will be larger for a given total false alarm 

rate;  

 Although the mode for undisturbed forest is similar for the two types, the swamp 

forest distribution has a long positive tail, causing proportionally more false alarms. 

 
ROC curves derived separately for swamp forest, dry forest and total forest are shown in 

Fig. 8b. The two types of forest exhibit significant differences, e.g. at 10% false alarm rate, 

the detection probability for dry forest is roughly twice that for swampy forest, but these 

correspond to different thresholds. Use of a single threshold based on total Pfa therefore gives 

different performance in dry and swamp forests and ideally separate thresholds should be set 

for swamp and dry forest, if these forest types can be delineated (as in our case).  

 



 14 

 

Fig. 8. (a) PDFs of temporal SD calculated for undisturbed forest and deforested regions:  total 

undisturbed ──; total deforested ─○─; dry undisturbed - - -; dry deforested ─Δ─; swampy 

undisturbed • • • ;  swampy deforested ─□─.  (b) The associated ROC curves for (−○−) dry, 

(─□─) swamp  total forest areas.  

 

4.2 Detecting deforestation using FBD data 

 

Detection of change based on ratios of FBD intensity images from different times (equivalent 

to differences of dB images) is discussed in section 3.3. Fig. 9 shows PDFs for the ratio 

     xxx 21 IIR   of images I1 and I2 acquired on 28/06/2007 and 30/06/2008, respectively, 

for the FBD scene shown as the inset in Fig. 2, in which 2590280 deforested pixels and 

6096144 undisturbed pixels are recorded in the databases. Separate PDFs are shown for 

undisturbed and deforested areas, and for the HH and the HV images. Surprisingly, the modal 

value in all four distributions is nearly zero, and the differences between undisturbed and 

deforested regions only emerge in the tails.  For both HH and HV, the PDFs for deforestation 

are wider and show that both increases and decreases in intensity are associated with 

deforestation.  

 

The importance of considering both types of change is clear from Fig. 10, which covers a 

portion of the scene measuring 40 km × 36 km.  For both HH and HV, the pixels lying in the 

top 10% of the ratios 12 II  and 21 II  are displayed in red, those in the 10 – 20% range in 

green, and those in the 20 – 30% range in blue. Figs. 10a and 10b indicate increases over time 

in HH and HV, while Figs. 10c and 10d indicate decreases.  Fig. 10e is a fused result 

discussed in Section 4.2.1, while Fig. 10f shows the areas of deforestation and undisturbed 

forest derived from the WWF databases. It is clear that:  

 the HH and HV data both contribute to overall detection of deforestation;  

 increases are as important as decreases in detecting deforestation; 

 changes in HH and HV complement each other, despite some overlap. 
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Fig. 9. PDFs of I1/I2 for scenes acquired on 28/06/2007 and 30/06/2008. Separate PDFs are 

shown for  and deforested (−○−) regions in HH and undisturbed (- - -) and 

deforested (─□─) regions in HV.  

 

The degree of overlap between the HH and HV changes shown in Fig. 10 can be quantified 

using the Simpson coefficient (Holliday et al. 2003); for two classes containing k and l pixels 

whose overlap contains m pixels, this is given by: 

),min( lk

m
Ssim  .    (9) 

This expresses the overlap as a fraction of the smallest class; complete overlap of either class 

by the other yields a value of unity.  The Simpson coefficients for HH and HV changes at the 

10
th

 and 20
th

 percentiles are given in Table 3, in which the 20% range includes the 10% range. 

 

Table 3.  Simpson coefficients for overlap of the four types of change at the 10% and 20% 

level for increases and decreases of the HH and HV channels. 

 

Change  Increase  Decrease 

    HV10 HV10 

Increase  HH10 0.271 0.013 

Decrease HH10 0.072 0.321 

    

    HV20 HV20 

Increase HH20 0.311 0.056 

Decrease HH20 0.128 0.336 

 

The highest value in the table is 0.336; hence, although there is some overlap between the 

four types of detection, they are significantly different, even when they have the same sign.  

The values in the leading diagonals are notably larger than the off-diagonal terms, showing 

that changes of the same sign in HH and HV are more closely associated than changes of 

opposite sign; nonetheless, it can be seen that at the 20% level, the set of pixels for which HV 

increases overlap those where HH decreases at the 0.13 level. Hence all four types of change 

are needed to build up a deforestation map. 

 

4.2.1 Combining FBD change measures 
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A first step in combining the different types of change is to use the generalised change 

measure R1 defined in eq. (8), which incorporates both increases and decreases of intensity. 

ROC curves were used to establish the optimum averaging window before forming ratios; this 

emerges clearly from Table 4, which shows the detection rate for deforestation under a false 

alarm rate of 20% for different window sizes. It can be seen that:  

 detection rates increase with the size of the window, up to a side-length of 23 pixels, 
then stabilise;  

 although the HH detection rate is lower for smaller windows, it approaches that for 

HV as the window gets bigger, and both channels give similar performance once the 

window size reaches 23x23 pixels (corresponding to a side-length of 287.5 m); 

 using larger windows does not improve the performance in HV and only slightly 
improves the performance in HH.  

This motivates the use of 23x23 averaging windows for FBD data throughout the paper.  

 

Table 4 Detection rates against window size for the HH and HV channels for Pfa = 0.2. 

 

Window side-

length (pixels) 

HH HV 

1 0.32 0.37 

5 0.36 0.43 

11 0.43 0.49 

17 0.49 0.52 

23 0.51 0.54 

29 0.53 0.54 

35 0.54 0.54 
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Fig. 10. A portion of the FBD scene measuring 40 km × 36 km; pixels whose FBD temporal 

ratio, measured in the undisturbed natural forest in the 2007 database, lies in the top 10%, 10-

20% & 20-30% percentile ranges are marked in red, green and blue respectively.  Non-forest 

is shown black. (a) HH increase; (b) HV increase; (c) HH decrease; (d) HV decrease; (e) the 

combined result using data fusion; (f) undisturbed natural forest (white) and deforested areas 

(red) derived from the WWF databases.  
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PDFs of R1 for deforested and undisturbed forest areas are shown in Fig. 11. Many deforested 

pixels exhibit low values of R1, but the higher values can separate deforested from 

undisturbed regions. Detection and false alarm rates when the R1 values for HH and HV are 

thresholded at the 10% and 20% levels are given in Table 5. This shows that HH gives fewer 

detections and more false alarms than HV at both the 10% and 20% level. However, HH and 

HV pick out significantly different pixels, as evidenced by the Simpson coefficient; the 

overlap in HH and HV gives a value of 0.34 for thresholding at the top 10% level, and 0.39 

for the top 20%. Thus combining HH and HV change should yield better performance. 

  

Various combination methods were investigated. The most effective on this dataset ranked the 

values of R1 for HH and HV separately, then assigned to each pixel the higher of the HH and 

HV rankings (Ginn et al. 2000); this is denoted as maxr. However, at 20% Pfa, this gave less 

than 1% higher detection rate than the simple average, R1av, of the R1 values for each channel, 

and for other datasets the results for R1av were slightly better than those for maxr.  Hence, as 

R1av is simpler to use, we adopted it as the means to combine the HH and HV data.  ROC 

curves for R1 for each channel and their combination, R1av, are shown in Fig. 12a.  

 

Table 5  Detection and false alarm rates when the R1 values for HH and HV are thresholded at 

the 10% and 20% levels. 

 

 HH10 HV10 HH20 HV20 

Pd 0.254 0.283 0.408 0.433 

Pfa 0.032 0.020 0.107 0.096 

 

 
Fig. 11. PDFs of R1 for HH in  and deforested (−○−) regions and for HV in 

undisturbed (- - -) and deforested (─□─) regions.  
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Fig. 12. (a) HH (−○−) and HV (─□─) ROC curves for the total forest region in the FBD scene 

obtained by thresholding R1, and the combined result obtained by using R1av (──); (b) ROC 

curves obtained using R1av for swampy forest (─□─), dry forest (−○−) and total forest  

The curves for R1av in (a) and R1av total forest in (b) are the same.  

 

Three key points emerge from Fig. 12a: 

1. HH gives a lower detection rate than HV for a given false alarm rate, but the 

difference decreases as the false alarm rate increases; at a false alarm rate of 20%,   

51.0% of the deforestation is detected using HH and 53.5% using HV. 

2. At 20% false alarm rate, the single-channel detection rates are comparable with 

ScanSAR (see Fig. 8b).   

3. Combining the HH and HV detections gives a detection rate of 63.5% at a false alarm 

rate of 20%, which is ~10% greater than detection using HV alone.   

 

Fig. 12b shows that much better performance is found for swampy forest than for dry forest in 

the combined detection scheme, as long as separate detection thresholds are applied to the two 

types of forest; this is the opposite of what was observed for ScanSAR (see Fig. 8b). If no a 

priori knowledge of the geographical locations of the two types of forest is available, an 

overall threshold will have to be chosen, and the performance will depend on the proportions 

of swamp and dry forest in the scene.  

 

The WWF databases also distinguish “closed” and “open” forest types, and differences were 

found between them: the detection probability was ~3% greater for closed forest than for open 

forest at a false alarm rate of 20%, and ~7% for a false alarm rate of 5%. 

4.3  Comparing FBD and ScanSAR detections 

FBD and ScanSAR ROC curves for the forest areas in the whole of the FBD scene are shown 

in Fig. 13a and 13b.  For FBD (Fig. 13a), a 30% threshold on R1av gives a detection rate of 

60.2% with a false alarm rate of 16.4%, while the same threshold on the ScanSAR temporal 

SD (Fig. 13b) detects 56.7% of the deforested regions with a false alarm rate of 17.8%. 

Hence, FBD data yield both a higher detection rate and lower false alarm rate than ScanSAR 

for thresholding at this percentile. In contrast, a 30% threshold applied to the ScanSAR 

temporal SD over the whole of region Y detects 62% of the deforested regions with a false 

alarm rate of 23.8% (Fig. 13c).  (Note that the normalisation of the ScanSAR data [see 

Section 3.1] was matched to the scene considered.) Such differences between scenes are to be 
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expected when an overall threshold is applied, since detection and false alarm rates are 

different for swamp and dry forest; hence the overall detection and false alarm rates will 

depend on the relative proportions of these forest types in the scene.  

 
Fig. 13. ROC curves for: (a) R1av over the FBD footprint; (b) ScanSAR temporal SD over the 

FBD footprint; (c) ScanSAR temporal SD over region Y. The 10%, 20% and 30% thresholds 

are indicated by vertical bars. 

 

A notable feature of ScanSAR false alarms is that they often occur along watercourses and, in 

these cases, are likely to be caused by signal variations associated with flooding. An example 

is shown in Fig. 14, where ScanSAR detections (marked with white shading) and 

deforestation derived from the databases (in red) are overlaid on a section of the FBD-3 scene, 

which is displayed with HH, HV and HH/HV assigned to red, green and blue respectively. 

The same region can be seen some 50 km WNW of location A in Fig. 7a. It is well-known 

that forest inundation often gives rise to major increases in L-band HH backscatter due to a 

sharp increase in the double-bounce mechanism, and this has been used to monitor the annual 

cycle of flooding in tropical forest regions (Martinez and Le Toan 2007). For a human 

interpreter, both context and the cyclical nature of these types of false alarm allow them to be 

readily recognised. However, we have not yet developed automatic methods to identify them, 

and they contribute to our estimates of false alarm rate. 
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4.4  Combining FBD and ScanSAR data for detection of deforestation 

Sections 4.1-4.3 have investigated the individual abilities of ScanSAR and FBD data to detect 

deforestation and compared them. However, the two types of detection use very different 

properties of the PALSAR data, so in this section we investigate whether gains can be made 

by combining them. Because ScanSAR data are supplied at a different resolution and 

orientation to FBD data, they were first re-sampled and co-registered with the FBD data using 

ENVI software (http://www.ittvs.com/).   

 

 
 

Fig. 14. Overlay of ScanSAR detections using a 10% threshold (hatched in white) and 

database-derived deforestation (in red) on a section of FBD-3 measuring 18.5×14.6 km that 

covers a region of swampy forest.   The HH, HV and HH/HV data in the FBD image take the 

red, green and blue channels respectively.  

 

ScanSAR temporal SD and FBD R1av have different ranges, but they can each be mapped to a 

value between 0 and 1 by the transformation   

 
 

minmax

minˆ
AA

AA
A






x
x       (10) 

where Amax and Amin are the maximum and minimum values of the measure A over the region 

(Whittle et al. 2004). The transformed values of R1av and ScanSAR temporal SD are denoted 

as )(ˆ
av1 xR  or DŜ  respectively, and the quantity sums is then defined by: 

)(ˆ)(ˆ)( av1 xxx DSRsums  .      (11) 

Other combined measures considered included taking the maximum value of  xav1R̂  and 

 xDŜ , and forming measures that first ranked the pixels in each data type separately, then 

assigned to each pixel the maximum or the sum of the two ranks. None of these out-

performed sums. 

 

The ROC curves for R1av and sums over the FBD footprint are shown in Fig. 15a. Combining 

ScanSAR with FBD data gives some improvement over FBD alone, but significant increases 

in detection rate only occur for false alarm rates around 20% or larger.  A visual impression of 

the effects of combining the data types is given by Fig. 16a-c, where detections over the FBD 

footprint using R1av, ScanSAR temporal SD and sums at the 10%, 20% and 30% threshold 

levels are indicated by red, green and blue respectively. The data combination suppresses 

several of the small noise-like areas in the bottom left of the scene that are detected in the 

FBD data with a 30% threshold (compare Fig. 16a and 16c). Also apparent is that the large 

area right of top centre detected by ScanSAR at the 10% level is reduced in size using the 

http://www.ittvs.com/
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combined measure, but the remnant has little overlap with the deforested area indicated by the 

databases, Fig. 16e. Since this area is associated with a river valley, it is likely to be a 

manifestation of ScanSAR erroneously detecting inundation as deforestation, as discussed in 

Section 4.3. 

 

 
Fig. 15. ROC curves for: (a) R1av -ScanSAR measure sums (-□-); 

(b) R1av -ScanSAR measure comb (-□-). The curves for R1av are 

identical to that shown in Fig. 13a and are calculated over the FBD footprint. 
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Fig. 16. Detection of deforestation over the FBD footprint using: (a) R1av; (b) the ScanSAR 

temporal SD; (c) the combined measure sums; (d) the combined measure comb. (e) 

Undisturbed forest (white) and deforested areas (red) derived from the WWF databases. For 

(a)-(d), red, green and blue indicate pixels in the top 10%, 10-20% and 20-30% ranges 

respectively.  
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The combined measure sums gives equal weights to 
av1R̂  and DŜ , but other linear weightings 

could be used. However, these are unlikely to improve performance. Heavier weighting 

towards 
av1R̂  would reduce the small gains from including ScanSAR shown in Fig. 16c. 

Heavier weighting towards DŜ  would increase the false alarm rate due to moisture effects. 

We therefore developed a non-linear method of combining the data that combines R1av with 

ScanSAR detections (rather than original values of the ScanSAR temporal SD). The 

procedure adopted was to form three masks with pixel values 0 or 1, where 1 was assigned to 

values in the top 10%, 10-20% and 20-30% ranges of ScanSAR temporal standard deviation 

over the FBD footprint; these masks are referred to as SC09, SC08 and SC07 respectively. 

These were then combined into a single image, S , containing only the discrete values 0.7, 

0.8, 0.9 and 0, using the expression  

 

.09*1.008*1.007*7.0 SCSCSCS      (12) 

 

Detection based on percentiles relies only on the ordering of values, so the FBD data were 

first ranked, and the ranks were divided by the total number of pixels to give a value, avR1


, 

between 0 and 1. The comb measure was then defined by: 

 

  SSRcomb av  11


      (13) 

 

Since S can only take the four values 0, 0.7, 0.8 and 0.9, comb can be thought of as four 

linearly increasing functions of avR1


 that take the value 1 if avR1


 = 1 and S if avR1


 = 0. Pixels 

whose ScanSAR temporal SD is small are strongly discriminated against for detection unless 

their values of avR1


 are very high.  

 

An ROC curve for comb is shown in Fig. 15b, where it is compared with the ROC curve for 

R1av.  The detection rate at a false alarm rate of 20% is 70.5%, while the corresponding values 

for sums for R1av alone are 67.7% and 63.5% respectively. Hence this method leads to useful 

improvement in performance. Note, however, that neither combined method gives better 

detection rates than R1av alone for false alarm rates below ~0.1. The benefits of using comb 

are illustrated by the map of detections shown in Fig. 16d.  This shows strong suppression of 

the noise-like regions detected in the lower left of Fig. 16a (using FBD alone) and in the 

FBD-ScanSAR combination using sums (Fig. 16c). The erroneous ScanSAR detections right 

of top centre are still present but at a lower level of confidence.  Comparison with Fig. 16e 

shows that, out of the three measures, comb gives the best correspondence between detections 

and the WWF database information. However, it must be noted that comb is not based on an 

optimisation principle and is to some extent empirically-based. Nonetheless, it illustrates two 

key points: (1) useful improvements in detection performance can be made by combining 

ScanSAR with FBD data; (2) the optimum approach will require a non-linear method of 

combining ScanSAR and FBD measurements.  

 

5. Accuracy of the WWF databases 

 

The quantitative analysis in this paper has assumed that the deforestation inferred from the 

WWF 2007 and 2008 databases accurately represents the changes occurring over the period 

observed by the radar images. However, this may be incorrect, for two reasons: 
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1. There may be errors in the databases.  Uncertainties in the Landsat classification of 

deforested areas have previously been noted for a study in the Brazilian 

Amazon(Houghton 2005b; Houghton et al. 2000). 

2. Deforestation may have occurred between the dates of the Landsat images used to 

derive the 2007 database and the first FBD scene, or the dates of the second FBD 

image and the Landsat images used to derive the 2008 database. 

The latter would have larger effects on the FBD data analysis, because the ScanSAR series 

begins much earlier than the first FBD image (Fig. 1).  

 

For FBD data, both sources of error can be accounted for by expressing the estimated values 

of Pd and Pfa in terms of their true values; these are given by (see Appendix for details): 
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where ),( jiD ttf  is the fraction of the forest area deforested between times it  and jt , 

and )|( NFDFPp  is the probability that a pixel is detected as deforestation even though it was 

non-forest on both the two acquisition dates of the FBD data. This false alarm probability is 

needed because some areas of non-forest could have been erroneously assigned to forest in 

the Landsat classification. Also, 
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where )|( NFFPL  denotes the probability that a Landsat pixel is classified as forest given that 

it is non-forest, and )|( FFPL , )|( FNFPL  and )|( NFNFPL  are defined similarly. FA  and 

NFA  are the areas of forest and non-forest at the time of formation of the 2007 WWF database, 

0t . The times 1t , 2t  and 3t  denote the date of the first FBD acquisition, the second FBD 

acquisition and the time of formation of the 2008 WWF database respectively. Then 
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Hence dd PP ˆ  as long as dP  exceeds both the false alarm rates. If the time effects can be 

neglected, so that 0),(),( 3210  ttfttf DD  and Y << 1, then 
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where ).,( 30 ttff DD   In this expression a critical factor is the size of Df  relative to X and Y. If 

it is comparable to or smaller than these terms then dP  can differ significantly from its 

estimate. If, instead, it is significantly larger than these terms, then dP̂  will be a good estimate 

of dP . For the area considered in this study, Df  ~ 15.5%, and this condition is likely to hold.  

 

Turning now to the false alarm rate, its true value will be less than its estimate as long as faP  

is less than both dP  and );|( NFDFPp otherwise, it can be less than or greater than its 

estimate, depending on the sizes of the different terms involved. However, the quantity V is 

expected to be small, and the ratio it is multiplied by will be less than 1 except under very 

unusual circumstances; as a result, 
faP̂  is likely to be a good estimate of .faP  Hence, for this 

dataset, errors in the Landsat classification are unlikely to cause large errors in the estimates 

of either the detection or false alarm rates derived for the FBD data. However, for other 

datasets, where the fractional area deforested is substantially smaller than here, significant 

errors in estimates of the detection rate can be caused if Landsat data are used as the 

reference. 

 

If the errors due to Landsat misclassification are very small, i.e. X = Y = V ~ 0, then eqs. (14) 

and (15) reduce to 
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and 

    .ˆ
fafa PP             (20) 

Hence only the detection probability is affected by the differences between the acquisition 

dates of the FBD data the Landsat images used to form the WWF databases. We can see from 

Fig.1 that this is likely to be more serious at the start of the period (from t0 to t1) since the 

interval between the last Landsat image used to form the WWF database and the first FBD 

image is several months. 

 

Evidence for errors caused by such time differences is illustrated in Fig. 17. This shows 

colour composites of the centre right of the region shown in Fig. 16 for FBD data from 

28/06/2007 (Fig. 17a) and 30/06/2008 (Fig. 17b), together with an overlay of the database 

estimate of deforestation, hatched in white, on the second FBD image (Fig. 17c). Forest 

canopy tends to depolarise the scattered signal (Leckie and Ranson 1998) and give enhanced 

HV backscatter, so is likely to comprise the area in green.  It is clear that large areas indicated 

as deforested by the WWF databases, i.e. classified as forest in the earlier database and as 

non-forest in the later one, were already deforested by the time of the first FBD acquisition. 

Expressed in terms of the quantities in eq. (19), this means that ),( 10 ttfD  cannot be neglected 

and ),,(),( 3021 ttfttf DD   so that our estimates of dP̂  may be significantly less than the true dP .  

Also shown in Fig. 17d is a Landsat-5 image from 20/06/2008, which was not used in 

constructing the 2008 database. It is unusually free of cloud and shows some important 

differences from the second FBD image, which was acquired only 10 days later. Most 

obvious is the anvil-shaped region in centre left, which Landsat clearly indicates to be a 
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disturbed region, but is practically invisible in the FBD data (though there are signs of 

disturbance on its left side in the earlier FBD image). This region is detected, at least partly, 

by ScanSAR (see Fig.7) and in the combination based on comb (Fig. 16d).  Both the Landsat 

and FBD images show row structures in the forest; these indicate drainage channels that are a 

precursor to deforestation.  

 

   

Fig. 17. (a) FBD image composite, with HH, HV and HH/HV taking the red, green and blue 

channels respectively, over a part of the area displayed in Fig. 10, for data acquired on 

28/06/2007. (b) As (a), but for 30/06/2008. (c) Image (b) overlaid by the database estimate of 

deforestation, hatched in white. (d) Part of an unusually cloud-free Landsat-5 image for the 

same region acquired on 20/06/2008 displayed as a RGB composite using channels 3, 4 and 5. 

 

 

6. Discussion 

 

This paper provides a thorough investigation of the strengths and limitations of ScanSAR and 

FBD data, used separately or in combination, in detecting deforestation in Sumatra. It has 

shown that the frequently-held assumption of the primary importance of HV compared with 

HH is not so clear in this dataset, and that expected indicators of deforestation (reduced HH 

and HV backscatter) form only part of the measurements needed to achieve optimum detection 

of deforestation. It also makes clear that ALOS-PALSAR achieves its best performance when 

FBD is fused with ScanSAR in the detection process. Key conclusions are: 



 28 

1. Deforestation does not leave a distinctive signature in ScanSAR data. Increases, decreases 

and more general types of change are all encountered when deforestation occurs. This is 

consistent with observations of both increases and decreases in L-band backscatter 

associated with deforestation in the Amazon (Angelis et al. 2002; Stone and Woodwell 

1988). Hence isolating the start of a deforestation event by trying to fit some characteristic 

profile of change is not effective, except in a limited number of cases. More useful are 

general measures of change, with temporal standard deviation proving the most effective. 

This yields detection rates of 38% and 56% for false alarm rates of 10% and 20% 

respectively.  

2. The detection performance of ScanSAR is greatly hampered by the great variability of 

backscatter in the remaining natural forest in this region, especially swamp forest. This 

means that acceptably low false alarm rates can only be achieved at the expense of reduced 

detection rates.  

3. The best results for detection of deforestation in FBD data exploit both increases and 

decreases in HH and HV intensity, since the four types of change carry complementary 

information. Contrary to expectations, the detection performance with HH alone is only 

slightly worse than with HV alone, but significantly better results are obtained by 

combining them. Detection rates for HH, HV and the combination of HH & HV were 

found to be respectively 39%, 43% and 53% for a false alarm rate of 10% and 51%, 54% 

and 64% for a false alarm rate of 20%. 

4. Of the types of change in FBD data caused by deforestation, only the decreases in HV and 

HH have ready explanations. The first is expected because forest canopies tend to 

depolarise the radar signal, giving a strong HV signal that is lost when deforestation 

occurs. For HH, canopy scattering tends to be greater than surface scattering except for 

very rough surfaces (where roughness is measured relative to the wavelength), so 

deforestation would be expected to reduce the HH signal. Explaining increases in the HV 

and HH signals is more speculative. Increased HV implies increased depolarisation, which 

could be induced by randomly oriented forest detritus left after deforestation. Because of 

the long wavelength, this would require relatively large tree components, such as 

secondary branches, to be left after deforestation, otherwise they would scatter too little 

power; this effect is therefore dependent on management practices. Explanation of the 

increases in the HH signal also seems to rely on material left after deforestation. If only a 

small amount of material is left and this consists of twigs and leaves, the dominant 

scattering mechanism would be surface scattering, which would tend to be specular and 

give low return because of the long wavelength. Hence an increase in HH requires larger 

types of material to be left, which effectively forms a very rough surface, giving increased 

backscatter. The spatially varying nature of these different types of change (see Fig. 10) 

presents problems in designing field studies to identify the physics of what is happening. 

5. ScanSAR and FBD respond to different properties of the scene and the best detection 

performance is obtained by combining both. This yields detection rates of 56% for a false 

alarm rate of 10% and 70% for a false alarm rate of 20%; the corresponding detection rates 

using only the FBD R1av measure are 53% and 64% respectively. 

6. The detection rates given in points 2, 3 & 5 are scene-dependent, since performance is 

different for wet and dry forests, and the setting of an overall detection threshold would be 

affected by the proportion of each type of forest in the scene. If information is available on 

the geographical distribution of each type of forest in the scene, the detection scheme could 

be improved by applying different thresholds to each forest type. 

7. Use of differences between forest maps derived from Landsat data to quantify the accuracy 

of deforestation estimates derived from radar can lead to errors in the estimates of 

detection and false alarm rates. These can be significant if: (a) the deforestation rate is 
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small and comparable to error rates in the Landsat classification; (b) there are appreciable 

differences in the intervals between which the Landsat data are gathered and those for the 

radar data. In this study, the detection rate inferred for FBD data is probably 

underestimated, but the false alarm rate is likely to be accurate. 

8. All the analysis in the paper uses fully automatic methods, but it is likely that false alarms 

in the ScanSAR data due to periodic flooding could be reduced by human inspection. A 

semi-automated approach that exploits human knowledge may further improve 

performance, particularly with ScanSAR, since visual perception of areas of change may 

be able to out-perform significantly the pixel-based approaches used in the automatic 

processing. The performance figures reported here could also be improved if knowledge 

about the locations of dry and swampy forest was included in the methodology. 

 

In this paper we have only considered the Riau region of Sumatra, and to realise the full 

significance of this work it is important to apply and test these methods in other tropical 

forests, both in Sumatra and in other parts of the tropics, including other parts of Indonesia, but 

also Africa and S. America. A key issue is then ancillary data to test performance; here we 

have benefited enormously from the availability of the WWF databases, despite the problems 

in using them consistently with the radar data discussed in Section 5. Extending this work to 

other areas is therefore best done in collaboration with other groups able to provide 

independent deforestation estimates. It is also important to evaluate the computing, data and 

human resources needed to apply these methods over large regions, for example the whole of 

Sumatra, and to investigate the feasibility of doing this. 

 

ALOS-PALSAR is not the sole sensor applicable for monitoring tropical deforestation, 

though confers considerable advantages, and it needs to be considered within the total global 

capability relevant to this task. A natural framework for this is provided by the GEO Forest 

Carbon Tracking (GEO-FCT; http://www.geo-fct.org/) initiative, and further testing and 

application of our work may perhaps be best placed within the GEO-FCT context. This fits 

well with GEO-FCT aspirations to contribute to the development of National Forest 

Monitoring and Carbon Accounting Systems. Such considerations strongly motivated the 

work reported here, which aims to ensure that the use of ALOS-PALSAR data in GEO-FCT 

is fully understood, well-founded, and applies optimal approaches with quantified limitations. 

 

Appendix: The effect of time inconsistencies and errors in the WWF 

databases 

 

In this paper, the reference data against which deforestation is assessed consists of the forest 

area found in the 2007 Landsat images at time t0. This contains both true forest and non-forest 

erroneously classified as forest, so has area 

 )|()|(0 NFFPAFFPAA LNFLFF  , 

where )|( FFPL and )|( NFFPL  denote the probability that a Landsat pixel is classified as 

forest, given that it is forest and non-forest respectively. We will write ).|(' FFPAA LF  At 

time t3, when the second WWF database is formed, a fraction ),( 30 ttfD  of the forested area 

has been lost. The area taken to be deforested between times t0 and t3 is the portion of 0FA  

classified as non-forest at time t3, which is given by: 

   )|()|()|(),()|(),(1' 30303 NFNFPNFFPANFNFPttfFNFPttfAA LLNFLDLDNF  . 

Here )|( FNFPL and )|( NFNFPL  denote the probability that a Landsat pixel is classified as 

non-forest given that it is forest and non-forest respectively.  

http://www.geo-fct.org/
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The true probability of detection in the FBD data is the fraction of the forested area lost 

between times t1 and t2 (i.e. the times of the first and second FBD acquisitions respectively), 

while the estimated probability of detection, ,ˆ
dP is the fraction of 3NFA  seen as deforested in 

the FBD data: this includes erroneous detections in both the non-forest (i.e. areas deforested 

before t1 and non-forest incorrectly classified as forest at time t0), and in the forest which is 

undisturbed at time t2. Hence the area indicated as deforested within the databases and 

detected as deforested using the FBD data is given by 

  

 )|()|()|(),(')|(

)|(),(1)|(),(')|(),('

10

303221

NFNFPNFFPANFNFPttfANFDFP

FNFPttfNFNFPttfAPNFNFPttfAPA

LLNFLDp

LDLDfaLDdNFDF




 

Here we have assumed that the detection and false alarm probabilities for FBD are 

independent of the classification probabilities for Landsat. Therefore 

    

)1(),(

),()|(),(1),(),(

/ˆ

30

10303221

3

YttfYX

XttfNFDFPYttfttfPttfP

AAP

D

DpDDfaDd

NFNFDFd








 

where ),( jiD ttf  is the fraction of the forest area deforested between times it  and ,jt  

)|( NFDFPp  is the probability that a pixel that is non-forest on both the acquisition dates of 

of the FBD data is detected as deforestation, and 

'

)|(

)|(

)|(

A

NFFPA

FFPA

NFFPA
X LNF

LF

LNF   

)|(

)|(

NFNFP

FNFP
Y

L

L . 

The estimated probability of false alarm, ,ˆ
faP is given by the fraction of 0FA  that is classified 

as forest using Landsat at time t3, 3FA , and as deforested by FBD, where  

   )|()|()|()|(),()|(' 30

303

NFFPNFFPAFFPNFFPttfFFPA

AAA

LLNFLLDL

NFFF




 

The area within 3FA  that is detected as deforested using FBD is 

  

 )|()|()|(),(')|(

)|(),(1)|(),(')|(),('

10

303221

NFFPNFFPANFFPttfANFDFP

FFPttfNFFPttfAPNFFPttfAPA

LLNFLDp

LDLDfaLDdFDF




 

Hence 

   

)1(),(1
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where  

)|(

)|(

FFP
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L

L . 
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